Sung-Koo Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5518337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioethanol Production from Azolla filiculoides by Saccharomyces cerevisiae, Pichia stipitis, Candida lusitaniae, and Kluyveromyces marxianus. Applied Biochemistry and Biotechnology, 2021, 193, 502-514.	2.9	7
2	Enhancement of Galactose Uptake from Kappaphycus alvarezii Hydrolysate Using Saccharomyces cerevisiae Through Overexpression of Leloir Pathway Genes. Applied Biochemistry and Biotechnology, 2021, 193, 335-348.	2.9	7
3	Thermochemical conversion of defatted microalgae Scenedesmus obliquus into levulinic and formic acids. Fuel, 2021, 283, 118907.	6.4	20
4	Enhancement of Galactose Uptake from Kappaphycus alvarezii Using Saccharomyces cerevisiae through Deletion of Negative Regulators of GAL Genes. Applied Biochemistry and Biotechnology, 2021, 193, 577-588.	2.9	5
	Development of the Parental Questionnaire for Cerebral Visual Impairment in Children Younger than		

SUNG-KOO KIM

#	Article	IF	CITATIONS
19	Optimization of hyper-thermal acid hydrolysis and enzymatic saccharification of Ascophyllum nodosum for ethanol production with mannitol-adapted yeasts. Bioprocess and Biosystems Engineering, 2019, 42, 1255-1262.	3.4	11
20	R-phycoerythrin, R-phycocyanin and ABE production from Gelidium amansii by Clostridium acetobutylicum. Process Biochemistry, 2019, 81, 139-147.	3.7	22
21	Enhancement of galactose consumption rate in Saccharomyces cerevisiae CEN.PK2-1 by CRISPR Cas9 and adaptive evolution for fermentation of Kappaphycus alvarezii hydrolysate. Journal of Biotechnology, 2019, 297, 78-84.	3.8	9
22	Optimization of light intensity and photoperiod for Isochrysis galbana culture to improve the biomass and lipid production using 14-L photobioreactors with mixed light emitting diodes (LEDs) wavelength under two-phase culture system. Bioresource Technology, 2019, 285, 121323.	9.6	29
23	Butanol and butyric acid production from Saccharina japonica by Clostridium acetobutylicum and Clostridium tyrobutyricum with adaptive evolution. Bioprocess and Biosystems Engineering, 2019, 42, 583-592.	3.4	13
24	Detoxification of Hydrolysates of the Red Seaweed Gelidium amansii for Improved Bioethanol Production. Applied Biochemistry and Biotechnology, 2019, 188, 977-990.	2.9	29
25	Application of the Severity Factor and HMF Removal of Red Macroalgae Gracilaria verrucosa to Production of Bioethanol by Pichia stipitis and Kluyveromyces marxianus with Adaptive Evolution. Applied Biochemistry and Biotechnology, 2019, 187, 1312-1327.	2.9	13
26	Acetone, butanol, and ethanol production from the green seaweed Enteromorpha intestinalis via the separate hydrolysis and fermentation. Bioprocess and Biosystems Engineering, 2019, 42, 415-424.	3.4	23
27	Catalytic conversion of glucose into levulinic and formic acids using aqueous BrÃ,nsted acid. Journal of Industrial and Engineering Chemistry, 2018, 63, 48-56.	5.8	31
28	Valorization of Chitosan as Food Waste of Aquatic Organisms into 5â€Hydroxymethylfurfural by Sulfamic Acidâ€Catalyzed Conversion Process. Energy Technology, 2018, 6, 1747-1754.	3.8	19
29	Acetone–Butanol–Ethanol Production from Waste Seaweed Collected from Gwangalli Beach, Busan, Korea, Based on pH-Controlled and Sequential Fermentation Using Two Strains. Applied Biochemistry and Biotechnology, 2018, 185, 1075-1087.	2.9	22
30	Optimization of the levulinic acid production from the red macroalga, Gracilaria verrucosa using methanesulfonic acid. Algal Research, 2018, 31, 116-121.	4.6	30
31	Efficient conversion of glucosamine to levulinic acid in a sulfamic acid-catalyzed hydrothermal reaction. RSC Advances, 2018, 8, 3198-3205.	3.6	21
32	Effects of light-emitting diode (LED) with a mixture of wavelengths on the growth and lipid content of microalgae. Bioprocess and Biosystems Engineering, 2018, 41, 457-465.	3.4	47
33	Effects of wavelength mixing ratio and photoperiod on microalgal biomass and lipid production in a two-phase culture system using LED illumination. Bioresource Technology, 2018, 253, 175-181.	9.6	60
34	Thermo-chemical conversion for production of levulinic and formic acids from glucosamine. Fuel Processing Technology, 2018, 172, 115-124.	7.2	31
35	Improved fermentation performance to produce bioethanol from Gelidium amansii using Pichia stipitis adapted to galactose. Bioprocess and Biosystems Engineering, 2018, 41, 953-960.	3.4	23
36	Bioethanol Production from Soybean Residue via Separate Hydrolysis and Fermentation. Applied Biochemistry and Biotechnology, 2018, 184, 513-523.	2.9	21

SUNG-KOO KIM

#	Article	IF	CITATIONS
37	Enhancement of biomass, lipids, and polyunsaturated fatty acid (PUFA) production in Nannochloropsis oceanica with a combination of single wavelength light emitting diodes (LEDs) and low temperature in a three-phase culture system. Bioresource Technology, 2018, 270, 504-511.	9.6	34
38	Valorization of chitosan into levulinic acid by hydrothermal catalytic conversion with methanesulfonic acid. Korean Journal of Chemical Engineering, 2018, 35, 1290-1296.	2.7	20
39	Biosugar Production from Gracilaria verrucosa with Sulfamic Acid Pretreatment and Subsequent Enzymatic Hydrolysis. Biotechnology and Bioprocess Engineering, 2018, 23, 302-310.	2.6	24
40	Enhancement of Ethanol Production via Hyper Thermal Acid Hydrolysis and Co-Fermentation Using Waste Seaweed from Gwangalli Beach, Busan, Korea. Journal of Microbiology and Biotechnology, 2018, 28, 401-408.	2.1	7
41	Bioethanol Production Using Waste Seaweed Obtained from Gwangalli Beach, Busan, Korea by Co-culture of Yeasts with Adaptive Evolution. Applied Biochemistry and Biotechnology, 2017, 183, 966-979.	2.9	24
42	Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose. Bioprocess and Biosystems Engineering, 2017, 40, 529-536.	3.4	19
43	Efficient utilization of Eucheuma denticulatum hydrolysates using an activated carbon adsorption process for ethanol production in a 5-L fermentor. Bioprocess and Biosystems Engineering, 2017, 40, 373-381.	3.4	4
44	Hyper-thermal acid hydrolysis and adsorption treatment of red seaweed, Gelidium amansii for butyric acid production with pH control. Bioprocess and Biosystems Engineering, 2017, 40, 403-411.	3.4	15
45	Evaluation of hyper thermal acid hydrolysis of Kappaphycus alvarezii for enhanced bioethanol production. Bioresource Technology, 2016, 209, 66-72.	9.6	25
46	Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa. Bioprocess and Biosystems Engineering, 2016, 39, 1173-1180.	3.4	11
47	Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresource Technology, 2016, 212, 254-261.	9.6	96
48	Enhanced biomass production and lipid accumulation of Picochlorum atomus using light-emitting diodes (LEDs). Bioresource Technology, 2016, 218, 1279-1283.	9.6	32
49	Optimization and Evaluation of Sugars and Chemicals Production from Green Macro-algae Enteromorpha intestinalis. Bioenergy Research, 2016, 9, 1155-1166.	3.9	16
50	Evaluation of ethanol production and bioadsorption of heavy metals by various red seaweeds. Bioprocess and Biosystems Engineering, 2016, 39, 915-923.	3.4	23
51	Production of sugars from macro-algae Gracilaria verrucosa using combined process of citric acid-catalyzed pretreatment and enzymatic hydrolysis. Algal Research, 2016, 13, 293-297.	4.6	41
52	Optimization of the production of platform chemicals and sugars from the red macroalga, Kappaphycus alvarezii. Algal Research, 2016, 13, 303-310.	4.6	32
53	Evaluation of Galactose Adapted Yeasts for Bioethanol Fermentation from Kappaphycus alvarezii Hydrolyzates. Journal of Microbiology and Biotechnology, 2016, 26, 1259-1266.	2.1	15
54	Effects of galactose adaptation in yeast for ethanol fermentation from red seaweed, Gracilaria verrucosa. Bioprocess and Biosystems Engineering, 2015, 38, 1715-1722.	3.4	22

SUNG-KOO KIM

#	Article	IF	CITATIONS
55	Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars. Bioresource Technology, 2015, 181, 1-6.	9.6	33
56	Enhanced ethanol production by fermentation of Gelidium amansii hydrolysate using a detoxification process and yeasts acclimated to high-salt concentration. Bioprocess and Biosystems Engineering, 2015, 38, 1201-1207.	3.4	9
57	Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural. Bioprocess and Biosystems Engineering, 2015, 38, 207-217.	3.4	77
58	Detoxification of Eucheuma spinosum Hydrolysates with Activated Carbon for Ethanol Production by the Salt-Tolerant Yeast Candida tropicalis. Journal of Microbiology and Biotechnology, 2015, 25, 856-862.	2.1	18
59	Thermal Acid Hydrolysis Pretreatment, Enzymatic Saccharification and Ethanol Fermentation from Red Seaweed, Gracilaria verrucosa. Microbiology and Biotechnology Letters, 2015, 43, 9-15.	0.4	14
60	Bioethanol production from the waste product of salted Undaria pinnatifida using laboratory and pilot development unit (PDU) scale fermenters. Biotechnology and Bioprocess Engineering, 2014, 19, 984-988.	2.6	7
61	Ethanol Production from the Seaweed Gelidium amansii, Using Specific Sugar Acclimated Yeasts. Journal of Microbiology and Biotechnology, 2014, 24, 264-269.	2.1	35
62	Ethanol Production from Red, Brown and Green Seaweeds and Biosorption of Heavy Metals by Waste Seaweed Slurry from Ethanol Production. KSBB Journal, 2014, 29, 414-420.	0.2	4
63	Effect of fermentation inhibitors in the presence and absence of activated charcoal on the growth of Saccharomyces cerevisiae. Bioprocess and Biosystems Engineering, 2013, 36, 659-666.	3.4	35
64	Ethanol production from seaweed (Undaria pinnatifida) using yeast acclimated to specific sugars. Biotechnology and Bioprocess Engineering, 2013, 18, 533-537.	2.6	36
65	Detoxification of hydrolysate by reactive-extraction for generating biofuels. Biotechnology and Bioprocess Engineering, 2013, 18, 88-93.	2.6	22
66	Enhanced production of heteropolysaccharide-7 by Beijerinckia indica HS-2001 in pilot-scaled bioreactor under optimized conditions involved in dissolved oxygen using sucrose-based medium. Biotechnology and Bioprocess Engineering, 2013, 18, 94-103.	2.6	6
67	Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Bioresource Technology, 2013, 140, 421-425.	9.6	82
68	Optimization of pretreatment conditions and use of a two-stage fermentation process for the production of ethanol from seaweed, Saccharina japonica. Biotechnology and Bioprocess Engineering, 2013, 18, 715-720.	2.6	16
69	Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast. Bioprocess and Biosystems Engineering, 2013, 36, 713-719.	3.4	70
70	Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess and Biosystems Engineering, 2012, 35, 11-18.	3.4	175
71	Enhanced production of heteropolysaccharide-7 by Beijerinckia indica HS-2001 in repeated batch culture with optimized substitution of culture medium. Biotechnology and Bioprocess Engineering, 2011, 16, 245-255.	2.6	8
72	High cell density fed-batch fermentation for the production of recombinant E. coli K-12 ghost vaccine against streptococcal disease. Biotechnology and Bioprocess Engineering, 2011, 16, 733-738.	2.6	3

#	Article	IF	CITATIONS
73	Oil production from five marine microalgae for the production of biodiesel. Biotechnology and Bioprocess Engineering, 2011, 16, 561-566.	2.6	42
74	Encapsulation of rat hepatocyte spheroids for the development of artificial liver. Biotechnology Letters, 1999, 13, 609-614.	0.5	12
75	Effect of LiCl on compression and tension properties ofPophyra perforata tissue. Journal of Applied Phycology, 1996, 8, 247-252.	2.8	0