
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5518169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al. Computational Materials Science, 2010, 47, 1040-1048.	1.4	357
2	First-principles calculations of pure elements: Equations of state and elastic stiffness constants. Computational Materials Science, 2010, 48, 813-826.	1.4	259
3	First-principles elastic constants of α- and Î,-Al2O3. Applied Physics Letters, 2007, 90, 101909.	1.5	238
4	Elastic constants of binary Mg compounds from first-principles calculations. Intermetallics, 2009, 17, 313-318.	1.8	212
5	Generalized stacking fault energy, ideal strength and twinnability of dilute Mg-based alloys: A first-principles study of shear deformation. Acta Materialia, 2014, 67, 168-180.	3.8	193
6	Effect of alloying elements on the elastic properties of Mg from first-principles calculations. Acta Materialia, 2009, 57, 3876-3884.	3.8	177
7	Diffusion coefficients of alloying elements in dilute Mg alloys: A comprehensive first-principles study. Acta Materialia, 2016, 103, 573-586.	3.8	169
8	A mixed-space approach to first-principles calculations of phonon frequencies for polar materials. Journal of Physics Condensed Matter, 2010, 22, 202201.	0.7	167
9	A first-principles approach to finite temperature elastic constants. Journal of Physics Condensed Matter, 2010, 22, 225404.	0.7	164
10	Exceptionally High Ionic Conductivity in Na ₃ P _{0.62} As _{0.38} S ₄ with Improved Moisture Stability for Solid‧tate Sodiumâ€ion Batteries. Advanced Materials, 2017, 29, 1605561.	11.1	164
11	Enthalpies of formation of magnesium compounds from first-principles calculations. Intermetallics, 2009, 17, 878-885.	1.8	159
12	A piezoelectric, strain-controlled antiferromagnetic memory insensitive to magnetic fields. Nature Nanotechnology, 2019, 14, 131-136.	15.6	150
13	Adsorption-controlled growth of La-doped BaSnO3 by molecular-beam epitaxy. APL Materials, 2017, 5, .	2.2	131
14	High Performance Anion Exchange Membrane Fuel Cells Enabled by Fluoropoly(olefin) Membranes. Advanced Functional Materials, 2019, 29, 1902059.	7.8	128
15	Structural and elastic properties of cubic and hexagonal TiN and AlN from first-principles calculations. Computational Materials Science, 2010, 48, 705-709.	1.4	126
16	First-principles calculations of lattice dynamics and thermal properties of polar solids. Npj Computational Materials, 2016, 2, .	3.5	119
17	A comprehensive first-principles study of pure elements: Vacancy formation and migration energies and self-diffusion coefficients. Acta Materialia, 2016, 109, 128-141.	3.8	117
	Elastic properties of cubic and rhombohedral <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:math 		

#	Article	IF	CITATIONS
19	Atomic structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass alloy. Acta Materialia, 2009, 57, 376-391.	3.8	108
20	Reassessment of the Al–Mn system and a thermodynamic description of the Al–Mg–Mn system. International Journal of Materials Research, 2007, 98, 855-871.	0.1	106
21	First-principles calculations of the elastic, phonon and thermodynamic properties of Al12Mg17. Acta Materialia, 2010, 58, 4012-4018.	3.8	103
22	Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys. Journal of Physics Condensed Matter, 2012, 24, 505403.	0.7	103
23	Lateral Versus Vertical Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Thermodynamic Insight into MoS ₂ . Nano Letters, 2016, 16, 5742-5750.	4.5	102
24	Effects of Alloying Elements on Stacking Fault Energies and Electronic Structures of Binary Mg Alloys: A First-Principles Study. Materials Research Letters, 2014, 2, 29-36.	4.1	95
25	Density-functional study of the thermodynamic properties and the pressure–temperature phase diagram of Ti. Physical Review B, 2009, 80, .	1.1	94
26	Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO ₄ (M = Mn, Fe, Co, and Ni): a comparative first-principles study. Journal of Materials Chemistry, 2012, 22, 1142-1149.	6.7	87
27	Effects of alloying elements on elastic properties of Ni3Al by first-principles calculations. Intermetallics, 2010, 18, 1163-1171.	1.8	86
28	Elastic properties of cubic, tetragonal and monoclinic ZrO2 from first-principles calculations. Journal of Nuclear Materials, 2011, 415, 13-17.	1.3	82
29	Extreme elastic anisotropy of cementite, Fe3C: First-principles calculations and experimental evidence. Scripta Materialia, 2008, 59, 814-817.	2.6	81
30	First-principles calculations of binary Al compounds: Enthalpies of formation and elastic properties. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35, 562-573.	0.7	81
31	Elastic anisotropy of γ′-Fe4N and elastic grain interaction in γ′-Fe4N1â^'y layers on α-Fe: First-principles calculations and diffraction stress measurements. Acta Materialia, 2007, 55, 5833-5843.	3.8	78
32	Effects of alloying elements on elastic properties of Ni by first-principles calculations. Computational Materials Science, 2009, 47, 254-260.	1.4	78
33	First-principles calculations of phonon and thermodynamic properties in the boron-alkaline earth metal binary systems: B-Ca, B-Sr, and B-Ba. Physical Review B, 2007, 75, .	1.1	72
34	Temperature-dependent elastic stiffness constants of α- and Î,-Al ₂ O ₃ from first-principles calculations. Journal of Physics Condensed Matter, 2010, 22, 375403.	0.7	70
35	The development and application of a thermodynamic database for magnesium alloys. Jom, 2008, 60, 45-47.	0.9	68
36	Fabrication and Characterization of Beaded SiC Quantum Rings with Anomalous Red Spectral Shift. Advanced Materials, 2012, 24, 5598-5603.	11.1	65

#	Article	IF	CITATIONS
37	Phase stability in $\hat{I}\pm$ - and \hat{I}^2 -rhombohedral boron. Physical Review B, 2007, 75, .	1.1	64
38	Lattice dynamics, thermodynamics and elastic properties of monoclinic Li2CO3 from density functional theory. Acta Materialia, 2012, 60, 5204-5216.	3.8	64
39	Thermodynamic and mechanical properties of lanthanum–magnesium phases from density functional theory. Journal of Alloys and Compounds, 2012, 512, 296-310.	2.8	64
40	Temperature-dependent ideal strength and stacking fault energy of fcc Ni: a first-principles study of shear deformation. Journal of Physics Condensed Matter, 2012, 24, 155402.	0.7	64
41	Atomic and electronic basis for the serrations of refractory high-entropy alloys. Npj Computational Materials, 2017, 3, .	3.5	64
42	Anomalous structural dynamics in liquid Al80Cu20: An ab initio molecular dynamics study. Acta Materialia, 2015, 97, 75-85.	3.8	62
43	The structural evolution of boron carbide via <i>ab initio</i> calculations. Applied Physics Letters, 2007, 91, .	1.5	61
44	First-Principles Study of Lattice Dynamics and Thermodynamics of TiO2Polymorphs. Inorganic Chemistry, 2011, 50, 6996-7003.	1.9	61
45	Thermal Expansion Anomaly Regulated by Entropy. Scientific Reports, 2014, 4, 7043.	1.6	61
46	Synthesis science of SrRuO3 and CaRuO3 epitaxial films with high residual resistivity ratios. APL Materials, 2018, 6, .	2.2	61
47	display="inline"> <mml:msub><mml:mi>BiFeO</mml:mi><mml:mn>3</mml:mn></mml:msub> Dom Wall Energies and Structures: A Combined Experimental and Density Functional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mtext mathvariant="normal">Theory<mml:mo mathvariant="bold">+</mml:mo><mml:mi< td=""><td>ain 2.9</td><td>59</td></mml:mi<></mml:mtext </mml:math 	ain 2.9	59
48	mathvariant="bold">UStudy. Physical Review Letters, 2013, 110, 267601 Vacancy mechanism of oxygen diffusivity in bcc Fe: A first-principles study. Corrosion Science, 2014, 83, 94-102.	3.0	56
49	First-principles lattice dynamics and heat capacity of BiFeO3. Acta Materialia, 2011, 59, 4229-4234.	3.8	55
50	A quaternary sodium superionic conductor - Na10.8Sn1.9PS11.8. Nano Energy, 2018, 47, 325-330.	8.2	55
51	Computation of entropies and phase equilibria in refractory V-Nb-Mo-Ta-W high-entropy alloys. Acta Materialia, 2018, 143, 88-101.	3.8	55
52	Temperature dependent elastic coefficients of Mg2X (X=Si, Ge, Sn, Pb) compounds from first-principles calculations. Journal of Alloys and Compounds, 2010, 498, 191-198.	2.8	53
53	A combined cluster variation method and ab initio approach to the γ-Fe[N]/γ′-Fe4N1â^'x phase equilibrium. Acta Materialia, 2005, 53, 255-264.	3.8	51
54	Atomic control of active-site ensembles in ordered alloys to enhance hydrogenation selectivity. Nature Chemistry, 2022, 14, 523-529.	6.6	51

#	ARTICLE al, vibrational, and thermodynamic properties of ordered and disordered Ni <mml:math< th=""><th>IF</th><th>CITATIONS</th></mml:math<>	IF	CITATIONS
55	xmins:mml="http://www.w3.org/1998/Math/MathML display="inline"> <mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>1</mml:mn><mml:mo>â^?</mml:mo><mml:mi>x</mml:mi></mml:mrow>xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:mrow </mml:msub></mml:mrow>	> < im ml:m	nro v9
56	A comprehensive first-principles study of solute elements in dilute Ni alloys: Diffusion coefficients and their implications to tailor creep rate. Acta Materialia, 2018, 157, 126-141.	3.8	49
57	First-principles lattice dynamics, thermodynamics, and elasticity of Cr2O3. Surface Science, 2012, 606, 1422-1425.	0.8	47
58	Reaction behavior and pore formation mechanism of TiAl–Nb porous alloys prepared by elemental powder metallurgy. Intermetallics, 2014, 44, 1-7.	1.8	47
59	Origin of Outstanding Phase and Moisture Stability in a Na ₃ P _{1–<i>x</i>} As _{<i>x</i>} S ₄ Superionic Conductor. ACS Applied Materials & Interfaces, 2017, 9, 16261-16269.	4.0	46
60	Local lattice distortion mediated formation of stacking faults in Mg alloys. Acta Materialia, 2019, 170, 231-239.	3.8	45
61	Thermodynamic fluctuations in magnetic states: Fe ₃ Pt as a prototype. Philosophical Magazine Letters, 2010, 90, 851-859.	0.5	44
62	Origin of negative thermal expansion phenomenon in solids. Scripta Materialia, 2011, 65, 664-667.	2.6	44
63	Martensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study. Acta Materialia, 2018, 147, 261-276.	3.8	44
64	Thermodynamic fluctuations between magnetic states from first-principles phonon calculations: The case of bcc Fe. Physical Review B, 2010, 82, .	1.1	42
65	Effects of alloying elements on thermal expansions of γ-Ni and γ′-Ni3Al by first-principles calculations. Acta Materialia, 2012, 60, 1846-1856.	3.8	42
66	Pore structure and gas permeability of high Nb-containing TiAl porous alloys by elemental powder metallurgy for microfiltration application. Intermetallics, 2013, 33, 2-7.	1.8	42
67	Electronic structures of long periodic stacking order structures in Mg: A first-principles study. Journal of Alloys and Compounds, 2014, 586, 656-662.	2.8	42
68	A novel hot pack rolling of high Nb–TiAl sheet from cast ingot. Intermetallics, 2015, 67, 19-25.	1.8	42
69	Synthesis and understanding of Na11Sn2PSe12 with enhanced ionic conductivity for all-solid-state Na-ion battery. Energy Storage Materials, 2019, 17, 70-77.	9.5	42
70	Anomalous energy pathway of vacancy migration and self-diffusion in hcp Ti. Physical Review B, 2011, 83, .	1.1	41
71	First-principles calculations of phonon and thermodynamic properties of Fe-Si compounds. Intermetallics, 2011, 19, 1374-1384.	1.8	40
72	A first-principles study of self-diffusion coefficients of fcc Ni. Computational Materials Science, 2014, 86, 17-23.	1.4	40

#	Article	IF	CITATIONS
73	Ti-substituted Li[Li _{0.26} Mn _{0.6â^'x} Ti _x Ni _{0.07} Co _{0.07}]O _{2< cathode material with improved structural stability and suppressed voltage fading. Journal of Materials Chemistry A, 2015, 3, 17376-17384.}	/sub>laye	red 40
74	Atomic and electronic basis for solutes strengthened (010) anti-phase boundary of L12 Co3(Al, TM): A comprehensive first-principles study. Acta Materialia, 2018, 145, 30-40.	3.8	40
75	A first-principles study of the diffusion coefficients of alloying elements in dilute α-Ti alloys. Physical Chemistry Chemical Physics, 2016, 18, 16870-16881.	1.3	39
76	Insight into γ-Ni/γ′-Ni3Al interfacial energy affected by alloying elements. Materials and Design, 2017, 133, 39-46.	3.3	39
77	Atomic structure and diffusivity in liquid Al80Ni20 by ab initio molecular dynamics simulations. Physica B: Condensed Matter, 2011, 406, 3089-3097.	1.3	38
78	Effects of alloying elements on the elastic properties of bcc Ti-X alloys from first-principles calculations. Computational Materials Science, 2018, 142, 215-226.	1.4	38
79	Adsorption-controlled growth of Ga2O3 by suboxide molecular-beam epitaxy. APL Materials, 2021, 9, .	2.2	38
80	Electron localization morphology of the stacking faults in Mg: A first-principles study. Chemical Physics Letters, 2012, 551, 121-125.	1.2	37
81	Mixed-space approach for calculation of vibration-induced dipole-dipole interactions. Physical Review B, 2012, 85, .	1.1	37
82	Nature of ferroelectric-paraelectric phase transition and origin of negative thermal expansion in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>PbTi</mml:mi><mml:msub><mml: mathvariant="normal">O<mml:mn>3</mml:mn></mml: </mml:msub></mml:mrow>.</mml:math 	:m i. 1	37
83	Physical Review B, 2015, 91, . First-principles study of adsorption and diffusion of oxygen on surfaces of TiN, ZrN and HfN. Applied Surface Science, 2018, 452, 457-462.	3.1	37
84	A first-principles study of structure, elasticity and thermal decomposition of Tilâ^'xTMxN alloys (TM=Y,) Tj ETQq0	0.0.rgBT	/Oyerlock 10
85	Calculated strain energy of hexagonal epitaxial thin films. Journal of Crystal Growth, 2002, 240, 6-13.	0.7	35
86	Density-functional study of the pressure-induced phase transitions in Ti at zero Kelvin. Physical Review B, 2009, 79, .	1.1	34
87	Solvus boundaries of (meta)stable phases in the Al–Mg–Si system: First-principles phonon calculations and thermodynamic modeling. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2010, 34, 20-25.	0.7	34
88	Thermodynamics of the S–Sn system: Implication for synthesis of earth abundant photovoltaic absorber materials. Solar Energy, 2016, 125, 314-323.	2.9	34
89	Thermodynamic properties of the Yb-Sb system predicted from first-principles calculations. Acta Materialia, 2021, 217, 117169.	3.8	34
90	Icosahedral ordering in Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass. Applied Physics Letters, 2008, 92, 201913.	1.5	33

#	Article	IF	CITATIONS
91	A thermodynamic framework for a system with itinerant-electron magnetism. Journal of Physics Condensed Matter, 2009, 21, 326003.	0.7	33
92	First-principles studies on vacancy-modified interstitial diffusion mechanism of oxygen in nickel, associated with large-scale atomic simulation techniques. Journal of Applied Physics, 2014, 115, .	1.1	33
93	Insight into structural, elastic, phonon, and thermodynamic properties of α-sulfur and energy-related sulfides: a comprehensive first-principles study. Journal of Materials Chemistry A, 2015, 3, 8002-8014.	5.2	33
94	Effects of alloying elements and temperature on the elastic properties of W-based alloys by first-principles calculations. Journal of Alloys and Compounds, 2016, 671, 267-275.	2.8	33
95	First-principles study of the mechanical properties and phase stability of TiO2. Computational Materials Science, 2014, 83, 114-119.	1.4	32
96	Metastable trigonal SnP: A promising anode material for potassium-ion battery. Carbon, 2020, 168, 468-474.	5.4	32
97	Lattice dynamics and anomalous bonding in rhombohedral As: First-principles supercell method. Physical Review B, 2007, 76, .	1.1	31
98	Broken symmetry, strong correlation, and splitting between longitudinal and transverse optical phonons of MnO and NiO from first principles. Physical Review B, 2010, 82, .	1.1	31
99	Magnetic thermodynamics of fcc Ni from first-principles partition function approach. Journal of Applied Physics, 2010, 108, .	1.1	31
100	On the scaling factor in Debye–Grüneisen model: A case study of the Mg–Zn binary system. Computational Materials Science, 2015, 98, 34-41.	1.4	31
101	Elastic knowledge base of bcc Ti alloys from first-principles calculations and CALPHAD-based modeling. Computational Materials Science, 2017, 140, 121-139.	1.4	30
102	Anomalous phonon stiffening associated with the (1 1 1) antiphase boundary in L12 Ni3Al. Acta Materialia, 2015, 82, 287-294.	3.8	29
103	Phase stability of the Cu-Sn-S system and optimal growth conditions for earth-abundant Cu2SnS3 solar materials. Solar Energy, 2017, 155, 745-757.	2.9	29
104	Accelerating exploitation of Co-Al-based superalloys from theoretical study. Materials and Design, 2018, 142, 139-148.	3.3	29
105	Microstructural characteristics and crack formation in additively manufactured bimetal material of 316L stainless steel and Inconel 625. Additive Manufacturing, 2020, 32, 101037.	1.7	29
106	Short-to-medium-range order in Mg65Cu25Y10 metallic glass. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 3078-3084.	0.9	28
107	Thermodynamic properties of Laves phases in the Mg–Al–Ca system at finite temperature from first-principles. Intermetallics, 2012, 22, 17-23.	1.8	28
108	Thermodynamic description of the Ti-Mo-Nb-Ta-Zr system and its implications for phase stability of Ti bio-implant materials. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2018, 61, 72-84.	0.7	28

#	Article	IF	CITATIONS
109	Understanding the Intrinsic P-Type Behavior and Phase Stability of Thermoelectric α-Mg ₃ Sb ₂ . ACS Applied Energy Materials, 2018, 1, 6600-6608.	2.5	28
110	Suitability of binary oxides for molecular-beam epitaxy source materials: A comprehensive thermodynamic analysis. APL Materials, 2020, 8, .	2.2	28
111	Effects of pressure and vibration on the thermal decomposition of cubic Ti1-x Al x N, Ti1-x Zr x N, and Zr1-x Al x N coatings: a first-principles study. Journal of Materials Science, 2012, 47, 7621-7627.	1.7	26
112	Understanding slow-growing alumina scale mediated by reactive elements: Perspective via local metal-oxygen bonding strength. Scripta Materialia, 2018, 150, 139-142.	2.6	26
113	Thermodynamic modeling of fcc order/disorder transformations in the Co–Pt system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35, 323-330.	0.7	25
114	Anisotropy and temperature dependence of structural, thermodynamic, and elastic properties of crystalline cellulose I _{<i>β</i>} : a first-principles investigation. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 085012.	0.8	25
115	First-principles thermodynamic theory of Seebeck coefficients. Physical Review B, 2018, 98, .	1.1	25
116	First-principles study of elastic and phonon properties of the heavy fermion compound CeMg. Journal of Physics Condensed Matter, 2009, 21, 246001.	0.7	24
117	Entropy favored ordering: Phase stability of Ni3Pt revisited by first-principles. Intermetallics, 2010, 18, 961-964.	1.8	24
118	Structural, phonon and thermodynamic properties of fcc-based metal nitrides from first-principles calculations. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2012, 37, 126-131.	0.7	24
119	Epitaxial Growth of Intermetallic MnPt Films on Oxides and Large Exchange Bias. Advanced Materials, 2016, 28, 118-123.	11.1	24
120	Power law scaled hardness of Mn strengthened nanocrystalline Al Mn non-equilibrium solid solutions. Scripta Materialia, 2016, 120, 31-36.	2.6	24
121	C15 NbCr2 Laves phase with mechanical properties beyond Pugh's criterion. Computational Materials Science, 2016, 121, 167-173.	1.4	24
122	Data set for diffusion coefficients and relative creep rate ratios of 26 dilute Ni-X alloy systems from first-principles calculations. Data in Brief, 2018, 20, 1537-1551.	0.5	24
123	Phonon and thermodynamic properties of Al–Mn compounds: A first-principles study. Computational Materials Science, 2011, 50, 2096-2103.	1.4	23
124	Phonon dispersions in random alloys: a method based on special quasi-random structure force constants. Journal of Physics Condensed Matter, 2011, 23, 485403.	0.7	23
125	Accurate calculations of phonon dispersion in Car <mmi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>2</mml:mn></mml:mrow </mml:msub>and CeO<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow< td=""><td>1.1</td><td>23</td></mml:mrow<></mml:msub></mml:math </mmi:math 	1.1	23
126	Control of Phase in Tin Sulfide Thin Films Produced via RF-Sputtering of SnS2 Target with Post-deposition Annealing. Journal of Electronic Materials, 2016, 45, 499-508.	1.0	23

#	Article	IF	CITATIONS
127	Phase transformation in Ti–48Al–6Nb porous alloys and its influence on pore properties. Materials and Design, 2015, 83, 508-513.	3.3	22
128	First-principles investigation of phase stability, elastic and thermodynamic properties in L12 Co3(Al,Mo,Nb) phase. Intermetallics, 2016, 78, 1-7.	1.8	22
129	Elastic3rd: A tool for calculating third-order elastic constants from first-principles calculations. Computer Physics Communications, 2021, 261, 107777.	3.0	22
130	Hyperfine interactions in hexagonal ε-Fe6Ny phase investigated by Mössbauer spectroscopy and ab initio calculations. Acta Materialia, 2006, 54, 2407-2417.	3.8	21
131	The influence of interstitial distribution on phase stability and properties of hexagonal ε-Fe6Cx, ε-Fe6Ny and ε-Fe6CxNy phases: A first-principles calculation. Acta Materialia, 2008, 56, 719-725.	3.8	21
132	Thermodynamic modeling of Mg–Ca–Ce system by combining first-principles and CALPHAD method. Journal of Alloys and Compounds, 2008, 463, 294-301.	2.8	21
133	Crystal structure determination of HÃǥg carbide, <i>χ</i> -Fe ₅ C ₂ by first-principles calculations and Rietveld refinement. Zeitschrift Für Kristallographie, 2012, 227, 207-220.	1.1	21
134	Effects of Composition on Atomic Structure, Diffusivity, and Viscosity of Liquid Al-Zr Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3471-3480.	1.1	21
135	Revealing the Microstates of Body-Centered-Cubic (BCC) Equiatomic High Entropy Alloys. Journal of Phase Equilibria and Diffusion, 2017, 38, 404-415.	0.5	21
136	Elastic properties of long periodic stacking ordered phases in Mg-Gd-Al alloys: A first-principles study. Intermetallics, 2018, 98, 18-27.	1.8	21
137	C-vacancy concentration in cementite, Fe3C1â~', in equilibrium with α-Fe[C] and γ-Fe[C]. Acta Materialia, 2015, 86, 374-384.	3.8	20
138	Unveiling non-equilibrium metallurgical phases in dissimilar Al-Cu joints processed by vaporizing foil actuator welding. Materials and Design, 2020, 186, 108306.	3.3	20
139	Density Functional Theory-Based Database Development and CALPHAD Automation. Jom, 2013, 65, 1533-1539.	0.9	19
140	First-principles calculations and thermodynamic modeling of the Snâ^'Sr and Mgâ^'Snâ^'Sr systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2014, 46, 237-248.	0.7	19
141	Effective elastic properties of polycrystals based on phase-field description. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 554, 67-71.	2.6	18
142	Cation Disorder Regulation by Microstate Configurational Entropy in Photovoltaic Absorber Materials Cu2ZnSn(S,Se)4. Journal of Physical Chemistry C, 2014, 118, 24884-24889.	1.5	18
143	Data set for diffusion coefficients of alloying elements in dilute Mg alloys from first-principles. Data in Brief, 2015, 5, 900-912.	0.5	18
144	Quantum behavior of water nano-confined in beryl. Journal of Chemical Physics, 2017, 146, 124307.	1.2	18

#	Article	IF	CITATIONS
145	Fundamentals of Thermal Expansion and Thermal Contraction. Materials, 2017, 10, 410.	1.3	18
146	Synergetic effects of solute and strain in biocompatible Zn-based and Mg-based alloys. Acta Materialia, 2019, 181, 423-438.	3.8	18
147	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">N<mml:msub><mml:mi mathvariant="normal">i<mml:mn>3</mml:mn></mml:mi </mml:msub><mml:mi>Al</mml:mi></mml:mi </mml:mrow> from stacking fault energy and ideal strength: A first-principles study via pure alias shear	ml:math>	18
148	deformation. Physical Review B, 2020, 101, . Thermodynamic modelling of the B–Ca, B–Sr and B–Ba systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2007, 31, 286-291.	0.7	17
149	First-principles study of binary special quasirandom structures for the Al–Cu, Al–Si, Cu–Si, and Mg–Si systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33, 769-773.	0.7	17
150	Thermodynamic Properties of Co ₃ O ₄ and Sr ₆ Co ₅ O ₁₅ from First-Principles. Inorganic Chemistry, 2010, 49, 10291-10298.	1.9	17
151	Integrating computational modeling and first-principles calculations to predict stacking fault energy of dilute multicomponent Ni-base alloys. Computational Materials Science, 2014, 91, 50-55.	1.4	17
152	Solid-Solution Hardening in Mg-Gd-TM (TMÂ=ÂAg, Zn, and Zr) Alloys: An Integrated Density Functional Theory and Electron Work Function Study. Jom, 2015, 67, 2433-2441.	0.9	17
153	Lattice distortion induced anomalous ferromagnetism and electronic structure in FCC Fe and Fe-TM (TMÂ=ÂCr, Ni, Ta and Zr) alloys. Materials Chemistry and Physics, 2015, 162, 748-756.	2.0	17
154	Strengthening Mg by self-dispersed nano-lamellar faults. Materials Research Letters, 2017, 5, 415-425.	4.1	17
155	A brief review of data-driven ICME for intelligently discovering advanced structural metal materials: Insight into atomic and electronic building blocks. Journal of Materials Research, 2020, 35, 872-889.	1.2	17
156	DFTTK: Density Functional Theory ToolKit for high-throughput lattice dynamics calculations. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2021, 75, 102355.	0.7	17
157	Zentropy Theory for Positive and Negative Thermal Expansion. Journal of Phase Equilibria and Diffusion, 2022, 43, 598-605.	0.5	17
158	Structure and energetics of Ni from ab initio molecular dynamics calculations. Computational Materials Science, 2014, 89, 242-246.	1.4	16
159	When a defect is a pathway to improve stability: a case study of the L12 Co3TM superlattice intrinsic stacking fault. Journal of Materials Science, 2019, 54, 13609-13618.	1.7	16
160	Anisotropic Fano resonance in the Weyl semimetal candidate LaAlSi. Physical Review B, 2020, 102, .	1.1	16
161	Application of the cluster variation method to ε-Fe2N1-z and ζ-Fe2N: ordering of interstitial atoms. Acta Materialia, 2003, 51, 3597-3606.	3.8	15
162	Effects of Hf, Y, and Zr on Alumina Scale Growth on NiAlCr and NiAlPt Alloys. Oxidation of Metals, 2019, 92, 303-313.	1.0	15

#	Article	IF	CITATIONS
163	Realization of Epitaxial Thin Films of the Topological Crystalline Insulator Sr 3 SnO. Advanced Materials, 2020, 32, 2000809.	11.1	15
164	Effects of alloying elements on elastic properties of Al by first-principles calculations. Journal of Mining and Metallurgy, Section B: Metallurgy, 2014, 50, 37-44.	0.3	15
165	The ordering behaviour of the O phase in Ti 2 AlNb-based alloys. Intermetallics, 2002, 10, 979-984.	1.8	14
166	Transformation textures in an α+β titanium alloy thin sheet. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 326, 249-254.	2.6	14
167	Quantifying charge ordering by density functional theory: Fe3O4 and CaFeO3. Chemical Physics Letters, 2014, 607, 81-84.	1.2	14
168	High-throughput investigations of configurational-transformation-dominated serrations in CuZr/Cu nanolaminates. Journal of Materials Science and Technology, 2020, 53, 192-199.	5.6	14
169	Quenching Differential Thermal Analysis and Thermodynamic Calculation to Determine Partition Coefficients of Solute Elements in Simplified Ni-Base Superalloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 487-498.	1.1	13
170	Synthesis, characterization and chemical stability of silicon dichalcogenides, Si(Se S1â^)2. Journal of Crystal Growth, 2016, 452, 151-157.	0.7	13
171	An ab initio molecular dynamics exploration of associates in Ba-Bi liquid with strong ordering trends. Acta Materialia, 2020, 190, 81-92.	3.8	13
172	Correlation analysis of materials properties by machine learning: illustrated with stacking fault energy from first-principles calculations in dilute fcc-based alloys. Journal of Physics Condensed Matter, 2021, 33, 295702.	0.7	13
173	Band structure of FeBO3: Implications for tailoring the band gap of nanoparticles. Applied Physics Letters, 2007, 91, 253115.	1.5	12
174	Magnetic phase transformations of face-centered cubic and hexagonal close-packed Co at zero Kelvin. Journal of Physics Condensed Matter, 2010, 22, 096006.	0.7	12
175	Ni ₃ N compound layers produced by gaseous nitriding of nickel substrates; layer growth, macrostresses and intrinsic elastic anisotropy. Journal of Materials Research, 2012, 27, 1531-1541.	1.2	12
176	Nature of ferroelectric–paraelectric transition. Philosophical Magazine Letters, 2012, 92, 399-407.	0.5	12
177	Structural mechanism for ultrahigh-strength Co-based metallic glasses. Scripta Materialia, 2013, 68, 257-260.	2.6	12
178	Lattice dynamics, thermodynamics and elastic properties of C22-Zr6FeSn2 from first-principles calculations. Journal of Nuclear Materials, 2016, 479, 461-469.	1.3	12
179	Ordering in liquid and its heredity impact on phase transformation of Mg-Al-Ca alloys. Journal of Magnesium and Alloys, 2023, 11, 2006-2017.	5.5	12
180	Experimental investigation and thermodynamic modeling of the Cu–Si–Zn system with the refined description for the Cu–Zn system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 35, 191-203.	0.7	11

#	Article	IF	CITATIONS
181	Phase stability and thermodynamic modeling of the Re–Ti system supplemented by first-principles calculations. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2012, 38, 71-80.	0.7	11
182	Impact of W on structural evolution and diffusivity of Ni–W melts: an ab initio molecular dynamics study. Journal of Materials Science, 2015, 50, 1071-1081.	1.7	11
183	Deformation behaviour and 6H-LPSO structure formation at nanoindentation in lamellar high Nb containing TiAl alloy. Philosophical Magazine Letters, 2015, 95, 85-91.	0.5	11
184	Thermodynamic modeling of the CaO–CaF2–Al2O3 system aided by first-principles calculations. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2015, 48, 113-122.	0.7	11
185	On the mean kinetic energy of the proton in strong hydrogen bonded systems. Journal of Chemical Physics, 2016, 144, 054302.	1.2	11
186	Stacking disorder in metastable NiSn4. Materials and Design, 2016, 109, 324-333.	3.3	11
187	Phase stability, elastic, and thermodynamic properties of the L1 ₂ (Co,Ni) ₃ (Al,Mo,Nb) phase from first-principles calculations. Journal of Materials Research, 2017, 32, 2100-2108.	1.2	11
188	A first-principles scheme to phonons of high temperature phase: No imaginary modes for cubic SrTiO3. Applied Physics Letters, 2010, 97, 162907.	1.5	10
189	Thermodynamics of multiferroic BiFeO3: Applications for the deposition of BiFeO3 thin films. Applied Physics Letters, 2011, 98, .	1.5	10
190	Prediction of Diffusion Coefficients in Liquid and Solids. Defect and Diffusion Forum, 0, 364, 182-191.	0.4	10
191	A curved pathway for oxygen interstitial diffusion in aluminum. Computational Materials Science, 2017, 140, 47-54.	1.4	10
192	First-principles calculations of lattice dynamics and thermodynamic properties for Yb14MnSb11. Journal of Applied Physics, 2018, 123, .	1.1	10
193	Thermodynamic properties of the Nd-Bi system via emf measurements, DFT calculations, machine learning, and CALPHAD modeling. Acta Materialia, 2022, 223, 117448.	3.8	10
194	Thermodynamic modeling of the Ba–Ni–Ti system. Journal of Alloys and Compounds, 2007, 430, 188-193.	2.8	9
195	A first-principles approach to transition states of diffusion. Journal of Physics Condensed Matter, 2012, 24, 305402.	0.7	9
196	Low energy structures of lithium-ion battery materials Li(MnxNixCo1â^2x)O2 revealed by first-principles calculations. Applied Physics Letters, 2013, 103, .	1.5	9
197	Temperature-dependent elastic stiffness constants of fcc-based metal nitrides from first-principles calculations. Journal of Materials Science, 2014, 49, 424-432.	1.7	9
198	A first-principles based description of the Hf-Ni system supported by high-temperature synchrotron experiments. Thermochimica Acta, 2018, 668, 142-151.	1.2	9

#	Article	IF	CITATIONS
199	An alternative approach to predict Seebeck coefficients: Application to La3â^'xTe4. Scripta Materialia, 2019, 169, 87-91.	2.6	9
200	First-principles study of structural and elastic properties of monoclinic and orthorhombic BiMnO ₃ . Journal of Physics Condensed Matter, 2010, 22, 295404.	0.7	8
201	Nb–Al diffusion reaction in high Nb containing TiAl porous alloys. Materials Science and Technology, 2015, 31, 1388-1391.	0.8	8
202	Elastic anisotropy of iron carbides with trigonal-prismatic coordination of C by Fe. Journal of Alloys and Compounds, 2015, 633, 390-394.	2.8	8
203	Thermodynamic modeling of phase equilibria and defect chemistry in the Zn-S system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2017, 59, 171-181.	0.7	8
204	First-principles calculations and thermodynamic modelling of long periodic stacking ordered (LPSO) phases in Mg-Al-Gd. Materialia, 2018, 4, 192-202.	1.3	8
205	Anomalous phonon-mode dependence in polarized Raman spectroscopy of the topological Weyl semimetal TaP. Physical Review B, 2020, 101, .	1.1	8
206	Effect of alloying elements on the stacking fault energies of dilute al-based alloys. Journal of Mining and Metallurgy, Section B: Metallurgy, 2018, 54, 185-196.	0.3	8
207	Forming mechanism of equilibrium and non-equilibrium metallurgical phases in dissimilar aluminum/steel (Al–Fe) joints. Scientific Reports, 2021, 11, 24251.	1.6	8
208	Atomic-scale unveiling of strengthening in interstitial solid soluted Nb-rich TiAl alloys. Journal of Alloys and Compounds, 2022, 917, 165484.	2.8	8
209	Thermodynamic description of the ternary compounds in the Cu-In-Se system. Rare Metals, 2006, 25, 481-487.	3.6	7
210	Thermodynamics of the B–Ca, B–Sr, and B–Ba systems: Applications for the fabrications of CaB6, SrB6, and BaB6 thin films. Applied Physics Letters, 2007, 90, 091914.	1.5	7
211	Effects of spin structures on Fermi surface topologies in BaFe2As2. Solid State Communications, 2011, 151, 272-275.	0.9	7
212	First-principles calculations of finite-temperature thermodynamic properties of binary solid solutions in the Al–Cu–Mg system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2014, 47, 196-210.	0.7	7
213	First-principles calculations and thermodynamic modeling of the S-Se system and implications for chalcogenide alloys. Journal of Alloys and Compounds, 2017, 694, 510-521.	2.8	7
214	Thermodynamic modeling of the Si-Y system aided by first-principles and phonon calculations. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2019, 65, 282-290.	0.7	7
215	An orthorhombic D022-like precursor to Al8Mo3 in the Al–Mo–Ti system. Journal of Alloys and Compounds, 2020, 823, 153807.	2.8	7
216	Determination of volume fraction in textured titanium alloy sheet. Scripta Materialia, 2001, 45, 287-292.	2.6	6

#	Article	IF	CITATIONS
217	Magnetic excitation and thermodynamics of BaFe ₂ As ₂ . International Journal of Quantum Chemistry, 2011, 111, 3565-3570.	1.0	6
218	First-principles calculations of interfacial and segregation energies in α-Cr ₂ O ₃ . Journal of Physics Condensed Matter, 2012, 24, 225001.	0.7	6
219	Thermodynamic description of the Ta–W–Zr system. International Journal of Materials Research, 2014, 105, 1048-1056.	0.1	6
220	Thermodynamic Modeling of the Pt-Te and Pt-Sb-Te Systems. Journal of Electronic Materials, 2015, 44, 2638-2650.	1.0	6
221	A New Relationship Among Self- and Impurity Diffusion Coefficients in Binary Solution Phases. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3295-3299.	1.1	6
222	Fabrication of nano-porous γ-Al2O3 layers on porous Ti-48Al-6Nb alloys. Materials and Design, 2016, 109, 700-708.	3.3	6
223	Quasiharmonic calculations of thermodynamic properties for La3â^xTe4 system. Computational Materials Science, 2018, 142, 417-426.	1.4	6
224	Understanding the Effect of Oxygen on the Glass-Forming Ability of Zr55Cu55Al9Be9 Bulk Metallic Glass by ab initio Molecular Dynamics Simulations. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2501-2511.	1.1	6
225	Understanding the surface adsorption and oxidation of cubic Cr0.5Al0.5N by first-principles calculations. Computational Materials Science, 2021, 196, 110518.	1.4	6
226	Achieving accurate energetics beyond (semi-)local density functional theory: Illustrated with transition metal disulfides, Cu2ZnSnS4 , and Na3PS4 related semiconductors. Physical Review Materials, 2019, 3, .	0.9	6
227	Thermodynamic modeling of the In–Pt–Sb system. International Journal of Materials Research, 2014, 105, 525-536.	0.1	5
228	The stability of deformation twins in aluminum enhanced by alloying elements. Journal of Materials Science and Technology, 2019, 35, 2625-2629.	5.6	5
229	Phase equilibria of Ti–Al–V system at 1300â€ [~] °C. Intermetallics, 2019, 115, 106609.	1.8	5
230	Activation volume dominated diffusivity of Ni50Al50 melt under extreme conditions. Computational Materials Science, 2020, 171, 109263.	1.4	5
231	Underpinned exploration for magnetic structure, lattice dynamics, electronic properties, and disproportionation of yttrium nickelate. AIP Advances, 2021, 11, .	0.6	5
232	Enhancing Moisture Stability of Sulfide Solid-State Electrolytes by Reversible Amphipathic Molecular Coating. ACS Applied Materials & Interfaces, 2022, 14, 32035-32042.	4.0	5
233	Mechanical properties and spinodal decomposition of Ti Al1â^'â^'Zr N coatings. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 2037-2040.	0.9	4
234	Generalization of first-principles thermodynamic model: Application to hexagonal close-packed <mml:math <br="" altimg="si49.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:mi>îµ</mml:mi></mml:mrow></mml:math> -Fe3N. Computational Materials Science, 2016, 117, 83-89.	1.4	4

#	Article	IF	CITATIONS
235	First-principles calculations and thermodynamic modeling of the Sn-Ta system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2017, 57, 46-54.	0.7	4
236	Thermodynamic properties and phase stability of the Ba-Bi system: A combined computational and experimental study. Journal of Alloys and Compounds, 2019, 771, 281-289.	2.8	4
237	From random stacking faults to polytypes: A 12-layer NiSn4 polytype. Journal of Alloys and Compounds, 2019, 774, 265-273.	2.8	4
238	Searching for a route to synthesize in situ epitaxial Pr2Ir2O7 thin films with thermodynamic methods. Npj Computational Materials, 2021, 7, .	3.5	4
239	Thermodynamic re-modelling of the Cu–Nb–Sn system: Integrating the nausite phase. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2022, 77, 102409.	0.7	4
240	Strain-induced dimensionality crossover of precursor modulations in Ni2MnGa. Applied Physics Letters, 2015, 106, 021910.	1.5	3
241	Crystal structure and phase stability of AlSc in the near-equiatomic Al–Sc alloy. Journal of Alloys and Compounds, 2015, 618, 192-196.	2.8	3
242	Study on impact of Cr and Mo on diffusion of H in 2.25Cr1Mo steel using first-principle calculations. Journal of Nuclear Materials, 2019, 525, 152-160.	1.3	3
243	Stability, Elastic and Electronic Properties of Ta2N by First-Principles Calculations. Crystals, 2021, 11, 445.	1.0	3
244	Thermodynamic Assessment of the Ag-Se System Aided by First-Principles Calculations. Journal of Phase Equilibria and Diffusion, 2018, 39, 870-881.	0.5	2
245	Experimental isothermal section of the Nb-Ni-Ru ternary system at 1100â€ [~] °C. Journal of Alloys and Compounds, 2019, 810, 151801.	2.8	2
246	Diffusion of hydrogen isotopes in 3C-SiC in HTR-PM: A first-principles study. Progress in Nuclear Energy, 2020, 119, 103181.	1.3	2
247	Site Occupation and Structural Phase Transformation of the (010) Antiphase Boundary in Boron-Modified L12 Ni3Al. Jom, 2021, 73, 2285-2292.	0.9	2
248	Predictive Crystal Plasticity Modeling of Single Crystal Nickel Based on First-Principles Calculations. Jom, 2022, 74, 1423-1434.	0.9	2
249	A new many-body potential with the second-moment approximation of tight-binding scheme for Hafnium. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2071-2080.	2.0	1
250	Microstructure-dependent rate theory model of defect segregation and phase stability in irradiated polycrystalline LiAlO ₂ . Modelling and Simulation in Materials Science and Engineering, 2022, 30, 025005.	0.8	1
251	Insight into ideal shear strength of Ni-based dilute alloys using first-principles calculations and correlational analysis. Computational Materials Science, 2022, 212, 111564.	1.4	1

Thermodynamic properties of magnesium alloys. , 2013, , 85-124.

#	Article	IF	CITATIONS
253	Ferromagnetism: Epitaxial Growth of Intermetallic MnPt Films on Oxides and Large Exchange Bias (Adv. Mater. 1/2016). Advanced Materials, 2016, 28, 204-204.	11.1	Ο
254	Local Lattice Distortion Mediated Formation of Stacking Faults in Mg Alloys. SSRN Electronic Journal, 0, , .	0.4	0
255	Preparation of CoGe2-type NiSn2 at 10ÂGPa. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2021, .	0.3	0
256	Solid Solution Hardening in Mg-Gd-TM (TM=Ag, Zn and Zr) Alloys: An Integrated Density Functional Theory and Electron Work Function Study. , 2016, , 157-157.		0
257	First-principles Study of Diffusion Coefficients of Alloy Elements in Dilute Mg Alloys. , 2016, , 97-101.		0