
Tore Skotland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5518033/publications.pdf Version: 2024-02-01

TOPE SKOTLAND

#	Article	IF	CITATIONS
1	Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today, 2011, 6, 176-185.	11.9	1,063
2	Lipids in exosomes: Current knowledge and the way forward. Progress in Lipid Research, 2017, 66, 30-41.	11.6	751
3	Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1302-1309.	2.4	546
4	Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. Journal of Lipid Research, 2019, 60, 9-18.	4.2	418
5	An emerging focus on lipids in extracellular vesicles. Advanced Drug Delivery Reviews, 2020, 159, 308-321.	13.7	289
6	Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers. European Journal of Cancer, 2017, 70, 122-132.	2.8	254
7	Clathrin-independent endocytosis: mechanisms and function. Current Opinion in Cell Biology, 2011, 23, 413-420.	5.4	200
8	Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget, 2015, 6, 30357-30376.	1.8	179
9	Shiga toxins. Toxicon, 2012, 60, 1085-1107.	1.6	169
10	Clathrin-independent endocytosis: an increasing degree of complexity. Histochemistry and Cell Biology, 2018, 150, 107-118.	1.7	148
11	Protein toxins from plants and bacteria: Probes for intracellular transport and tools in medicine. FEBS Letters, 2010, 584, 2626-2634.	2.8	108
12	The Ether Lipid Precursor Hexadecylglycerol Stimulates the Release and Changes the Composition of Exosomes Derived from PC-3 Cells. Journal of Biological Chemistry, 2015, 290, 4225-4237.	3.4	102
13	Shiga toxin and its use in targeted cancer therapy and imaging. Microbial Biotechnology, 2011, 4, 32-46.	4.2	95
14	Retrograde transport of protein toxins through the Golgi apparatus. Histochemistry and Cell Biology, 2013, 140, 317-326.	1.7	82
15	Interdigitation of long-chain sphingomyelin induces coupling of membrane leaflets in a cholesterol dependent manner. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 281-288.	2.6	76
16	Exosomal proteins as prostate cancer biomarkers in urine: From mass spectrometry discovery to immunoassay-based validation. European Journal of Pharmaceutical Sciences, 2017, 98, 80-85.	4.0	73
17	In vitro stability analyses as a model for metabolism of ferromagnetic particles (Clariscanâ,,¢), a contrast agent for magnetic resonance imaging. Journal of Pharmaceutical and Biomedical Analysis, 2002, 28, 323-329.	2.8	69
18	Lipid requirements for entry of protein toxins into cells. Progress in Lipid Research, 2014, 54, 1-13.	11.6	69

TORE SKOTLAND

#	Article	IF	CITATIONS
19	The role of PS 18:0/18:1 in membrane function. Nature Communications, 2019, 10, 2752.	12.8	65
20	Glycosphingolipid Requirements for Endosomeâ€ŧoâ€Golgi Transport of Shiga Toxin. Traffic, 2009, 10, 868-882.	2.7	60
21	New metal-based nanoparticles for intravenous use: requirements for clinical success with focus on medical imaging. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 730-737.	3.3	60
22	Molecular imaging: challenges of bringing imaging of intracellular targets into common clinical use. Contrast Media and Molecular Imaging, 2012, 7, 1-6.	0.8	52
23	Cell-Penetrating Peptides: Possibilities and Challenges for Drug Delivery in Vitro and in Vivo. Molecules, 2015, 20, 13313-13323.	3.8	51
24	Protection against Shiga Toxins. Toxins, 2017, 9, 44.	3.4	51
25	The Interplay Between Blood Proteins, Complement, and Macrophages on Nanomedicine Performance and Responses. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 581-592.	2.5	47
26	Drug-Loaded Photosensitizer-Chitosan Nanoparticles for Combinatorial Chemo- and Photodynamic-Therapy of Cancer. Biomacromolecules, 2020, 21, 1489-1498.	5.4	45
27	Cell density-induced changes in lipid composition and intracellular trafficking. Cellular and Molecular Life Sciences, 2014, 71, 1097-1116.	5.4	42
28	Cytotoxicity of Poly(Alkyl Cyanoacrylate) Nanoparticles. International Journal of Molecular Sciences, 2017, 18, 2454.	4.1	38
29	Cabazitaxel-loaded Poly(2-ethylbutyl cyanoacrylate) nanoparticles improve treatment efficacy in a patient derived breast cancer xenograft. Journal of Controlled Release, 2019, 293, 183-192.	9.9	38
30	The role of lipid species in membranes and cancer-related changes. Cancer and Metastasis Reviews, 2020, 39, 343-360.	5.9	34
31	Biodistribution, pharmacokinetics and excretion studies of intravenously injected nanoparticles and extracellular vesicles: Possibilities and challenges. Advanced Drug Delivery Reviews, 2022, 186, 114326.	13.7	33
32	Determining the Turnover of Glycosphingolipid Species by Stable-Isotope Tracer Lipidomics. Journal of Molecular Biology, 2016, 428, 4856-4866.	4.2	32
33	Development of nanoparticles for clinical use. Nanomedicine, 2014, 9, 1295-1299.	3.3	30
34	The Ether Lipid Precursor Hexadecylglycerol Causes Major Changes in the Lipidome of HEp-2 Cells. PLoS ONE, 2013, 8, e75904.	2.5	28
35	Biological response and cytotoxicity induced by lipid nanocapsules. Journal of Nanobiotechnology, 2020, 18, 5.	9.1	26
36	Small variations in nanoparticle structure dictate differential cellular stress responses and mode of cell death. Nanotoxicology, 2019, 13, 761-782.	3.0	23

Tore Skotland

#	Article	IF	CITATIONS
37	Mechanism of cellular uptake and cytotoxicity of paclitaxel loaded lipid nanocapsules in breast cancer cells. International Journal of Pharmaceutics, 2021, 597, 120217.	5.2	23
38	The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget, 2016, 7, 86871-86888.	1.8	21
39	<p>Paclitaxel-loaded biodegradable ROS-sensitive nanoparticles for cancer therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 6269-6285.	6.7	19
40	Transport of nanoparticles across the endothelial cell layer. Nano Today, 2021, 36, 101029.	11.9	19
41	The Protein Toxins Ricin and Shiga Toxin as Tools to Explore Cellular Mechanisms of Internalization and Intracellular Transport. Toxins, 2021, 13, 377.	3.4	19
42	Data including GROMACS input files for atomistic molecular dynamics simulations of mixed, asymmetric bilayers including molecular topologies, equilibrated structures, and force field for lipids compatible with OPLS-AA parameters. Data in Brief, 2016, 7, 1171-1174.	1.0	15
43	Ceramide-containing liposomes with doxorubicin: time and cell-dependent effect of C6 and C12 ceramide. Oncotarget, 2017, 8, 76921-76934.	1.8	15
44	NC100668, A NEW TRACER FOR IMAGING OF VENOUS THROMBOEMBOLISM: DISPOSITION AND METABOLISM IN RATS. Drug Metabolism and Disposition, 2006, 34, 111-120.	3.3	13
45	Novel actions of 2-deoxy- <scp>D</scp> -glucose: protection against Shiga toxins and changes in cellular lipids. Biochemical Journal, 2015, 470, 23-37.	3.7	13
46	The ether lipid precursor hexadecylglycerol protects against Shiga toxins. Cellular and Molecular Life Sciences, 2014, 71, 4285-4300.	5.4	12
47	Addition of lysophospholipids with large head groups to cells inhibits Shiga toxin binding. Scientific Reports, 2016, 6, 30336.	3.3	12
48	Exogenous lysophospholipids with large head groups perturb clathrinâ€mediated endocytosis. Traffic, 2017, 18, 176-191.	2.7	12
49	Injection of nanoparticles into cloven-hoof animals: Asking for trouble. Theranostics, 2017, 7, 4877-4878.	10.0	12
50	Doping and drug testing. EMBO Reports, 2017, 18, 351-354.	4.5	8
51	Physicochemical Characterization, Toxicity and <i>In Vivo</i> Biodistribution Studies of a Discoidal, Lipid-Based Drug Delivery Vehicle: Lipodisq Nanoparticles Containing Doxorubicin. Journal of Biomedical Nanotechnology, 2020, 16, 419-431.	1.1	8
52	Changes of protein solutions during storage: a study of albumin pharmaceutical preparations. Biotechnology and Applied Biochemistry, 2010, 55, 121-130.	3.1	7
53	Biodistribution of Poly(alkyl cyanoacrylate) Nanoparticles in Mice and Effect on Tumor Infiltration of Macrophages into a Patient-Derived Breast Cancer Xenograft. Nanomaterials, 2021, 11, 1140.	4.1	7
54	Need for more focus on lipid species in studies of biological and model membranes. Progress in Lipid Research, 2022, 86, 101160.	11.6	7

TORE SKOTLAND

#	Article	IF	CITATIONS
55	NC100668, a New Tracer Tested for Imaging of Venous Thromboembolism: Pharmacokinetics and Metabolism in Humans. Drug Metabolism and Disposition, 2007, 35, 1979-1984.	3.3	6
56	Wholeâ€body section fluorescence imaging – a novel method for tissue distribution studies of fluorescent substances. Contrast Media and Molecular Imaging, 2009, 4, 73-80.	0.8	6
57	Cabazitaxel-loaded poly(alkyl cyanoacrylate) nanoparticles: Toxicity and changes in the proteome of breast, colon and prostate cancer cells. Nanotoxicology, 2021, 15, 1-20.	3.0	5
58	Diacylglycerol kinase and phospholipase D inhibitors alter the cellular lipidome and endosomal sorting towards the Golgi apparatus. Cellular and Molecular Life Sciences, 2021, 78, 985-1009.	5.4	5
59	Structural Variants of poly(alkylcyanoacrylate) Nanoparticles Differentially Affect LC3 and Autophagic Cargo Degradation. Journal of Biomedical Nanotechnology, 2020, 16, 432-445.	1.1	5
60	Cellular effects of fluorodeoxyglucose: Global changes in the lipidome and alteration in in in in in intracellular transport. Oncotarget, 2016, 7, 79885-79900.	1.8	5
61	Are doping tests in sports trustworthy?. EMBO Reports, 2022, 23, e54431.	4.5	5
62	Different roles of the C-terminal end of Stx1A and Stx2A for AB5complex integrity and retrograde transport of Stx in HeLa cells. Pathogens and Disease, 2015, 73, ftv083.	2.0	3
63	Improving scientific practice in sportsâ€associated drug testing. FEBS Journal, 2019, 286, 2664-2669.	4.7	2
64	Mass spectrometry-based measurements of cyclic adenosine monophosphate in cells, simplified using reversed phase liquid chromatography with a polar characterized stationary phase. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1160, 122384.	2.3	2
65	Shiga toxins. , 2015, , 267-286.		1
66	Cellular uptake of nanoparticles: Involvement of caveolae?. Precision Nanomedicine, 2021, 4, .	0.8	1
67	Modulation of Ricin Intoxication by the Autophagy Inhibitor EACC. Toxins, 2022, 14, 360.	3.4	1
68	How organizers of scientific meetings and journal editors could facilitate transfer of nanomedicine into the clinic. European Journal of Nanomedicine, 2016, 8, .	0.6	0