
Masanari Takamiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5518013/publications.pdf Version: 2024-02-01

MASANADI TAKAMIYA

#	Article	IF	CITATIONS
1	Surface functionalisation-dependent adverse effects of metal nanoparticles and nanoplastics in zebrafish embryos. Environmental Science: Nano, 2022, 9, 375-392.	4.3	10
2	Two plus one is almost three: A fast approximation for multi-view deconvolution. Biomedical Optics Express, 2022, 13, 147-158.	2.9	2
3	Methylmercury-induced hair cell loss requires hydrogen peroxide production and leukocytes in zebrafish embryos. Toxicology Letters, 2022, 356, 151-160.	0.8	3
4	Loss of the Bardet-Biedl protein Bbs1 alters photoreceptor outer segment protein and lipid composition. Nature Communications, 2022, 13, 1282.	12.8	20
5	In Vivo Behavior of the Antibacterial Peptide Cyclo[RRRWFW], Explored Using a 3-Hydroxychromone-Derived Fluorescent Amino Acid. Frontiers in Chemistry, 2021, 9, 688446.	3.6	6
6	Neuron-Radial Glial Cell Communication via BMP/Id1 Signaling Is Key to Long-Term Maintenance of the Regenerative Capacity of the Adult Zebrafish Telencephalon. Cells, 2021, 10, 2794.	4.1	11
7	Differential Nanoparticle Sequestration by Macrophages and Scavenger Endothelial Cells Visualized <i>in Vivo</i> in Real-Time and at Ultrastructural Resolution. ACS Nano, 2020, 14, 1665-1681.	14.6	62
8	Gene duplication and functional divergence of the zebrafish otospiralin genes. Development Genes and Evolution, 2020, 230, 27-36.	0.9	0
9	Proteasome subunit <i>PSMC3</i> variants cause neurosensory syndrome combining deafness and cataract due to proteotoxic stress. EMBO Molecular Medicine, 2020, 12, e11861.	6.9	43
10	Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. PLoS Genetics, 2020, 16, e1008774.	3.5	29
11	Light-controllable dithienylethene-modified cyclic peptides: photoswitching the in vivo toxicity in zebrafish embryos. Beilstein Journal of Organic Chemistry, 2020, 16, 39-49.	2.2	22
12	Bone morphogenetic protein signaling regulates Id1-mediated neural stem cell quiescence in the adult zebrafish brain via a phylogenetically conserved enhancer module. Stem Cells, 2020, 38, 875-889.	3.2	15
13	MondoA regulates gene expression in cholesterol biosynthesis-associated pathways required for zebrafish epiboly. ELife, 2020, 9, .	6.0	7
14	Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. , 2020, 16, e1008774.		0
15	Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. , 2020, 16, e1008774.		0
16	Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. , 2020, 16, e1008774.		0
17	Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. , 2020, 16, e1008774.		0
18	Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. , 2020, 16, e1008774.		0

#	Article	IF	CITATIONS
19	Pax6 organizes the anterior eye segment by guiding two distinct neural crest waves. , 2020, 16, e1008774.		0
20	Functions of thioredoxin1 in brain development and in response to environmental chemicals in zebrafish embryos. Toxicology Letters, 2019, 314, 43-52.	0.8	5
21	Access to Photoreactive Coreâ€Shell Nanomaterials by Photoinitiated Polymerizationâ€Induced Selfâ€Assembly. ChemPhotoChem, 2019, 3, 1084-1089.	3.0	6
22	Straightforward access to biocompatible poly(2-oxazoline)-coated nanomaterials by polymerization-induced self-assembly. Chemical Communications, 2019, 55, 3741-3744.	4.1	38
23	The HMG box transcription factors Sox1a and b specify a new class of glycinergic interneurons in the spinal cord of zebrafish embryos. Development (Cambridge), 2019, 146, .	2.5	20
24	Oriented immobilization of a delicate glucose-sensing protein on silica nanoparticles. Biomaterials, 2019, 190-191, 76-85.	11.4	12
25	EmbryoMiner: A new framework for interactive knowledge discovery in large-scale cell tracking data of developing embryos. PLoS Computational Biology, 2018, 14, e1006128.	3.2	33
26	Intrinsically Fluorescent, Stealth Polypyrazoline Nanoparticles with Large Stokes Shift for In Vivo Imaging. Small, 2018, 14, e1801571.	10.0	25
27	Neuronal sFlt1 and Vegfaa determine venous sprouting and spinal cord vascularization. Nature Communications, 2017, 8, 13991.	12.8	53
28	Female versus male biological identities of nanoparticles determine the interaction with immune cells in fish. Environmental Science: Nano, 2017, 4, 895-906.	4.3	31
29	Microtome-integrated microscope system for high sensitivity tracking of in-resin fluorescence in blocks and ultrathin sections for correlative microscopy. Scientific Reports, 2017, 7, 13583.	3.3	6
30	Melanosomes in pigmented epithelia maintain eye lens transparency during zebrafish embryonic development. Scientific Reports, 2016, 6, 25046.	3.3	9
31	Zebrafish biosensor for toxicant induced muscle hyperactivity. Scientific Reports, 2016, 6, 23768.	3.3	20
32	Dysferlin-mediated phosphatidylserine sorting engages macrophages in sarcolemma repair. Nature Communications, 2016, 7, 12875.	12.8	61
33	Automation strategies for large-scale 3D image analysis. Automatisierungstechnik, 2016, 64, 555-566.	0.8	1
34	An ensemble-averaged, cell density-based digital model of zebrafish embryo development derived from light-sheet microscopy data with single-cell resolution. Scientific Reports, 2015, 5, 8601.	3.3	44
35	Molecular Description of Eye Defects in the Zebrafish Pax6b Mutant, sunrise, Reveals a Pax6b-Dependent Genetic Network in the Developing Anterior Chamber. PLoS ONE, 2015, 10, e0117645.	2.5	32
36	Automated prior knowledge-based quantification of neuronal patterns in the spinal cord of zebrafish. Bioinformatics, 2014, 30, 726-733.	4.1	7

MASANARI TAKAMIYA

#	Article	IF	CITATIONS
37	Gene Responses in the Central Nervous System of Zebrafish Embryos Exposed to the Neurotoxicant Methyl Mercury. Environmental Science & Technology, 2013, 47, 3316-3325.	10.0	69
38	NBP, a zebrafish homolog of human Kank3, is a novel Numb interactor essential for epidermal integrity and neurulation. Developmental Biology, 2012, 365, 164-174.	2.0	10
39	Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon. Glia, 2010, 58, 870-888.	4.9	233
40	Funduscopy in Adult Zebrafish and Its Application to Isolate Mutant Strains with Ocular Defects. PLoS ONE, 2010, 5, e15427.	2.5	11
41	Sequential and cooperative action of Fgfs and Shh in the zebrafish retina. Developmental Biology, 2008, 314, 200-214.	2.0	33
42	Hedgehog signalling controls zebrafish neural keel morphogenesis via its level-dependent effects on neurogenesis. Developmental Dynamics, 2006, 235, 978-997.	1.8	16
43	Action Kinetics of a Prothoracicostatic Peptide from Bombyx mori and Its Possible Signaling Pathway. General and Comparative Endocrinology, 2001, 122, 98-108.	1.8	15
44	Differences between recombinant PTTH and crude brain extracts in cAMP-mediated ecdysteroid secretion from the prothoracic glands of the silkworm, Bombyx mori. Journal of Insect Physiology, 1999, 45, 415-422.	2.0	21
45	Purification of a novel substance from skeletal muscles with motoneuron survival activity. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1999, 75, 54-58.	3.8	0
46	Identification of RNA as a substance responsible for the survival of chick spinal motoneurons <i>in vitro</i> . Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1999, 75, 59-63.	3.8	0