Himadri B Bohidar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5517909/publications.pdf

Version: 2024-02-01

80 1,882 23 40 papers citations h-index g-index

95 95 95 2301 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Comparative In Vitro Cytotoxicity Study of Carbon Dot-Based Organometallic Nanoconjugates: Exploration of Their Cell Proliferation, Uptake, and Localization in Cancerous and Normal Cells. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-11.	4.0	4
2	Multimode sensing of riboflavin via Ag@carbon dot conjugates. Applied Nanoscience (Switzerland), 2020, 10, 281-291.	3.1	11
3	Fluorescent MoS ₂ Quantum Dot–DNA Nanocomposite Hydrogels for Organic Light-Emitting Diodes. ACS Applied Nano Materials, 2020, 3, 1289-1297.	5.0	18
4	Multifunctional, fluorescent DNA-derived carbon dots for biomedical applications: bioimaging, luminescent DNA hydrogels, and dopamine detection. Journal of Materials Chemistry B, 2020, 8, 1277-1289.	5.8	59
5	pH responsive doxorubucin loaded zein nanoparticle crosslinked pectin hydrogel as effective site-specific anticancer substrates. International Journal of Biological Macromolecules, 2020, 152, 1027-1037.	7.5	30
6	Ubiquity of complex coacervation of DNA and proteins in aqueous solution. Soft Matter, 2020, 16, 9525-9533.	2.7	1
7	Boron-doped carbon quantum dots: a â€~turn-off' fluorescent probe for dopamine detection. Nanotechnology, 2020, 32, 025501.	2.6	10
8	Complex Coacervation and Overcharging during Interaction between Hydrophobic Zein and Hydrophilic Laponite in Aqueous Ethanol Solution. ACS Omega, 2020, 5, 33064-33074.	3.5	3
9	Hierarchical self-assembly, spongy architecture, liquid crystalline behaviour and phase diagram of Laponite nanoplatelets in alcohol-water binary solvents. Journal of Colloid and Interface Science, 2019, 554, 731-742.	9.4	5
10	Fluorescent complex coacervates of agar and in situ formed zein nanoparticles: Role of electrostatic forces. Carbohydrate Polymers, 2019, 224, 115150.	10.2	21
11	Dual-probe (colorimetric and fluorometric) detection of ferritin using antibody-modified gold@carbon dot nanoconjugates. Mikrochimica Acta, 2019, 186, 687.	5.0	15
12	Slow dynamics and equilibrium gelation in fractionated montmorillonite nanoplatelet dispersions. Colloid and Polymer Science, 2019, 297, 1053-1065.	2.1	12
13	Heat-induced coacervation of elastin and its possible thermoreversibility. Colloid and Polymer Science, 2019, 297, 947-956.	2.1	4
14	Hydrogel nanotubes with ice helices as exotic nanostructures for diabetic wound healing. Materials Horizons, 2019, 6, 274-284.	12.2	17
15	Effect of organic and inorganic salt environment on the complex coacervation of in situ formed protein nanoparticles and DNA. International Journal of Biological Macromolecules, 2019, 122, 1290-1296.	7.5	7
16	In-situ Observation of Hierarchical Self-Assembly Driven by Bicontinuous Gelation in Mixed Nanodisc Dispersions. Scientific Reports, 2018, 8, 5589.	3.3	8
17	Carbon dots-modified chitosan based electrochemical biosensing platform for detection of vitamin D. International Journal of Biological Macromolecules, 2018, 109, 687-697.	7.5	90
18	Antifungal efficacy of Au@ carbon dots nanoconjugates against opportunistic fungal pathogen, Candida albicans. Colloids and Surfaces B: Biointerfaces, 2018, 163, 355-361.	5.0	36

#	Article	IF	CITATIONS
19	Universal Validity of Einstein Relation and Size-Dependent Viscosity and Surface-Active Characteristics of Nanofluids. International Journal of Nanoscience, 2018, 17, 1850006.	0.7	O
20	Eco-friendly synthesis of CuInS ₂ and CuInS ₂ @ZnS quantum dots and their effect on enzyme activity of lysozyme. RSC Advances, 2018, 8, 30589-30599.	3.6	29
21	Antimicrobial and biocompatibility of highly fluorescent ZnSe core and ZnSe@ZnS core-shell quantum dots. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	17
22	Size-dependent magnetic properties of cubic-phase MnSe nanospheres emitting blue-violet fluorescence. Materials Research Express, 2018, 5, 056106.	1.6	6
23	Bandgap Tunable AgInS based Quantum Dots for High Contrast Cell Imaging with Enhanced Photodynamic and Antifungal Applications. Scientific Reports, 2018, 8, 9322.	3.3	64
24	Surface patch bindingâ€induced exfoliation of nanoclays and enhancement of physical properties of gelatin organogels. Polymer International, 2017, 66, 327-336.	3.1	1
25	Self-assembly and gelation of TX-100 in water. Colloid and Polymer Science, 2017, 295, 903-909.	2.1	0
26	Self-healing gelatin ionogels. International Journal of Biological Macromolecules, 2017, 95, 603-607.	7. 5	28
27	ZnSe core and ZnSe@ZnS core-shell quantum dots as platform for folic acid sensing. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	9
28	Solvent hydrophobicity induced complex coacervation of dsDNA and in situ formed zein nanoparticles. Soft Matter, 2017, 13, 6784-6791.	2.7	9
29	Folic acid supramolecular ionogels. Physical Chemistry Chemical Physics, 2017, 19, 22934-22945.	2.8	9
30	Complex coacervation in charge complementary biopolymers: Electrostatic versus surface patch binding. Advances in Colloid and Interface Science, 2017, 250, 40-53.	14.7	56
31	DNA ionogel: Structure and self-assembly. Physical Chemistry Chemical Physics, 2017, 19, 804-812.	2.8	27
32	Thermo-reversibility, ergodicity and surface charge–temperature dependent phase diagram of anionic, cationic and neutral co-gels of gelatin–BSA complexes. RSC Advances, 2016, 6, 40123-40136.	3.6	4
33	Influence of Structure, Charge, and Concentration on the Pectin–Calcium–Surfactant Complexes. Journal of Physical Chemistry B, 2016, 120, 4249-4257.	2.6	20
34	Size-dependent CdSe quantum dot–lysozyme interaction and effect on enzymatic activity. RSC Advances, 2016, 6, 46744-46754.	3.6	31
35	CulnGaSe nanocrystals for detection of trace amount of water in D ₂ O (at ppm level). Crystal Research and Technology, 2016, 51, 561-568.	1.3	23
36	Hierarchical Internal Structures in Gelatin–Bovine Serum Albumin/β-Lactoglobulin Gels and Coacervates. Journal of Physical Chemistry B, 2016, 120, 9506-9512.	2.6	9

#	Article	IF	Citations
37	Comparative evaluation of enzyme-free nanoclay-ionic liquid based electrodes for detection of bioanalytes. RSC Advances, 2016, 6, 66120-66129.	3.6	3
38	Self-assembly of synthetic liposome-like curcumin nanoparticles. RSC Advances, 2016, 6, 73677-73682.	3.6	4
39	Surface patch binding induced interaction of anisotropic nanoclays with globular plasma proteins. RSC Advances, 2016, 6, 104117-104125.	3.6	11
40	Characterization of microstructure, viscoelasticity, heterogeneity and ergodicity in pectin–laponite–CTAB–calcium nanocomposite hydrogels. Carbohydrate Polymers, 2016, 136, 242-249.	10.2	4
41	Spontaneous evolution of self-assembled phases from anisotropic colloidal dispersions. Colloid and Polymer Science, 2015, 293, 2883-2890.	2.1	16
42	Potential of Gelatinâ€Zinc Oxide Nanocomposite as Ascorbic Acid Sensor. Electroanalysis, 2015, 27, 2448-2457.	2.9	14
43	Charge heterogeneity induced binding and phase stability in β-lacto-globulin–gelatin B gels and coacervates at their common pl. RSC Advances, 2015, 5, 67066-67076.	3.6	11
44	Interactions in globular proteins with polyampholyte: coacervation route for protein separation. RSC Advances, 2015, 5, 13579-13589.	3.6	26
45	Internal structure and thermo-viscoelastic properties of agar ionogels. Carbohydrate Polymers, 2015, 134, 617-626.	10.2	12
46	Effect of pyrrolidinium based ionic liquid on the channel form of gramicidin in lipid vesicles. Journal of Photochemistry and Photobiology B: Biology, 2015, 149, 1-8.	3.8	31
47	Electrochemical response of agar ionogels towards glucose detection. Analytical Methods, 2015, 7, 5876-5885.	2.7	15
48	Heparin-like native protein aggregate dissociation by 1-alkyl-3-methyl imidazolium chloride ionic liquids. International Journal of Biological Macromolecules, 2015, 73, 23-30.	7.5	18
49	Is surface patch binding between proteins symmetric about isoelectric pH?. RSC Advances, 2014, 4, 24710.	3.6	10
50	Overcharging, thermal, viscoelastic and hydration properties of DNA–gelatin complex coacervates: pharmaceutical and food industries. RSC Advances, 2014, 4, 11705-11713.	3.6	21
51	Cellular uptake induced biotoxicity of surface-modified CdSe quantum dots. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	21
52	Surface patch binding and mesophase separation in biopolymeric polyelectrolyte–polyampholyte solutions. International Journal of Biological Macromolecules, 2014, 63, 29-37.	7.5	19
53	Slow dynamics, hydration and heterogeneity in Laponite dispersions. Soft Matter, 2013, 9, 2003.	2.7	22
54	Effect of persistence length on binding of DNA to polyions and overcharging of their intermolecular complexes in aqueous and in 1-methyl-3-octyl imidazolium chloride ionic liquid solutions. Physical Chemistry Chemical Physics, 2013, 15, 12262.	2.8	24

#	Article	IF	Citations
55	Kinetics of anisotropic ordering in Laponite dispersions induced by a water-air interface. Physical Review E, 2013, 88, 052310.	2.1	8
56	Negative differential resistance in nanoclay films offers pressure sensing characteristics. Applied Physics Letters, 2013, 102, 103109.	3.3	1
57	Sub-diffusion and trapped dynamics of neutral and charged probes in DNA-protein coacervates. AIP Advances, 2013, 3, 112108.	1.3	2
58	DNA–Gelatin Complex Coacervation, UCST and First-Order Phase Transition of Coacervate to Anisotropic ion gel in 1-Methyl-3-octylimidazolium Chloride Ionic Liquid Solutions. Journal of Physical Chemistry B, 2012, 116, 14805-14816.	2.6	39
59	Condensation, Complex Coacervation, and Overcharging during DNA–Gelatin Interactions in Aqueous Solutions. Journal of Physical Chemistry B, 2012, 116, 13192-13199.	2.6	28
60	Ergodicity breaking and aging dynamics in Laponite–Montmorillonite mixed clay dispersions. Soft Matter, 2012, 8, 6120.	2.7	28
61	Physical and fluorescent characteristics of non-functionalized carbon nanoparticles from candle soot. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	20
62	Spinodal decomposition and phase separation kinetics in nanoclay–biopolymer solutions. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 555-565.	2.1	23
63	Statistical thermodynamics of liquid-liquid phase separation in ternary systems during complex coacervation. Physical Review E, 2010, 82, 036107.	2.1	13
64	Kinetics of self-organization of polyampholyte nanoparticles in solutions. Bulletin of Materials Science, 2008, 31, 391-395.	1.7	0
65	Structural studies of agar–gelatin complex coacervates by small angle neutron scattering, rheology and differential scanning calorimetry. International Journal of Biological Macromolecules, 2007, 41, 301-307.	7.5	67
66	Mesophase separation and probe dynamics in protein–polyelectrolyte coacervates. Soft Matter, 2007, 3, 1064-1076.	2.7	70
67	Effect of gelatin molecular charge heterogeneity on formation of intermolecular complexes and coacervation transition. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1511-1520.	2.1	17
68	Length scale hierarchy in sol, gel, and coacervate phases of gelatin. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1653-1667.	2.1	29
69	AFM Study of Morphology of Ethanol Induced Gelatin Coacervation. International Journal of Polymeric Materials and Polymeric Biomaterials, 2005, 54, 675-689.	3.4	8
70	Anomalous self-assembly of gelatin in ethanol-water marginal solvent. Physical Review E, 2004, 69, 021902.	2.1	29
71	Small-angle neutron and dynamic light scattering study of gelatin coacervates. Pramana - Journal of Physics, 2004, 63, 271-276.	1.8	6
72	Surface Active and Association Behavior of Oxybutyleneâ-'Oxyethylene and Oxyethyleneâ-'Oxybutyleneâ-'Oxyethylene Copolymers in Aqueous Solutions. Langmuir, 2003, 19, 4597-4603.	3.5	5

#	Article	IF	Citations
73	Dynamic Light Scattering and Viscosity Studies on the Association Behavior of Silicone Surfactants in Aqueous Solutions. Journal of Physical Chemistry B, 2003, 107, 5382-5390.	2.6	34
74	pH-Induced Coacervation in Complexes of Bovine Serum Albumin and Cationic Polyelectrolytes. Biomacromolecules, 2000, 1, 100-107.	5.4	246
75	Light scattering and viscosity study of heat aggregation of insulin. , 1998, 45, 1-8.		26
76	Dynamic Light Scattering Study of Gelatinâ^'Surfactant Interactions. Journal of Physical Chemistry B, 1998, 102, 5063-5068.	2.6	50
77	Determination of absolute polydispersity and molecular weight distribution of high molecular weight polymers from dynamic light scattering. Journal of Chemical Physics, 1993, 99, 673-681.	3.0	6
78	Kinetics of sol–gel transition in thermoreversible gelation of gelatin. Journal of Chemical Physics, 1993, 98, 8970-8977.	3.0	129
79	Light scattering observation of spinodal line in gelatin gels. Journal of Chemical Physics, 1993, 98, 3568-3570.	3.0	11
80	Biomolecules of Similar Charge Polarity Form Hybrid Gel. Soft Materials, 0, , 1-12.	1.7	0