Hussein M Ali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5517768/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SAR and QSAR of COVID-19 Main Protease–Inhibitor Interactions of Recently X-ray Crystalized Complexes. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2022, 92, 281-291.	1.0	2
2	Bioavailability and antioxidant potentials of fresh and pasteurized kiwi juice before and after in vitro gastrointestinal digestion. Journal of Food Science and Technology, 2020, 57, 4277-4285.	2.8	3
3	Structure-antioxidant activity relationships, QSAR, DFT calculation, and mechanisms of flavones and flavonols. Medicinal Chemistry Research, 2019, 28, 2262-2269.	2.4	13
4	Energetic and electronic computation of the two-hydrogen atom donation process in catecholic and non-catecholic anthocyanidins. Food Chemistry, 2018, 243, 145-150.	8.2	11
5	A DFT and QSAR study of the role of hydroxyl group, charge and unpaired-electron distribution in anthocyanidin radical stabilization and antioxidant activity. Medicinal Chemistry Research, 2017, 26, 2666-2674.	2.4	18
6	Microbial decolorization and degradation of crystal violet dye by Aspergillus niger. International Journal of Environmental Science and Technology, 2016, 13, 2917-2926.	3.5	24
7	Antiradical and reductant activities of anthocyanidins and anthocyanins, structure–activity relationship and synthesis. Food Chemistry, 2016, 194, 1275-1282.	8.2	98
8	The role of various amino acids in enzymatic browning process in potato tubers, and identifying the browning products. Food Chemistry, 2016, 192, 879-885.	8.2	103
9	Browning inhibition mechanisms by cysteine, ascorbic acid and citric acid, and identifying PPO-catechol-cysteine reaction products. Journal of Food Science and Technology, 2015, 52, 3651-9.	2.8	74
10	QSAR and mechanisms of radical scavenging activity of phenolic and anilinic compounds using structural, electronic, kinetic, and thermodynamic parameters. Medicinal Chemistry Research, 2015, 24, 987-998.	2.4	9
11	Structural features, kinetics and SAR study of radical scavenging and antioxidant activities of phenolic and anilinic compounds. Chemistry Central Journal, 2013, 7, 53.	2.6	80
12	Microwave-assisted synthesis and antimicrobial activities of flavonoid derivatives. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 518-522.	2.2	55
13	Selectivity, acetylcholinesterase inhibition kinetics, and quantitative structure–activity relationships of a series of N-(2-oxido-1,3,2-benzodioxa-phosphol-2-yl) amino acid ethyl or diethyl esters. Pesticide Biochemistry and Physiology, 2005, 83, 58-65.	3.6	8
14	Inhibition and recovery of serum, liver and brain acetylcholinesterase activities in rats exposed to new groups ofO-ethyl phosphoramidates and benzo-1,3,2-dioxaphospholenes. Toxicological and Environmental Chemistry, 2004, 86, 37-43.	1.2	1
15	Biodisposition and Biochemical Effects of a New Phosphoramidate Series in Rat Tissues. Bulletin of Environmental Contamination and Toxicology, 2003, 70, 1197-1204.	2.7	2
16	Quantitative structure-activity relationships (QSAR) of two series of O-aryl or N-aryl O-ethyl phosphoramidate and phosphorodiamidate fungicides incorporating amino acid ethyl esters. Bulletin of Environmental Contamination and Toxicology, 2000, 65, 415-420.	2.7	2
17	Potential antifungal activity and structure-activity relationships of some 2-amino acid substituted benzo-1,3,2-dioxaphospholene, oxazaphospholine and diazaphospholine 2-ones. Bulletin of Environmental Contamination and Toxicology, 2000, 65, 421-426.	2.7	3
18	SYNTHESIS AND QUANTITATIVE OF STRUCTURE-ACTIVITY RELATIONSHIPS OF PHOSPHORAMIDATES AND PHOSPHORODIAMIDATES INCORPORATING AMINO ACID ESTERS. Phosphorus, Sulfur and Silicon and the Related Elements, 2000, 163, 41-54.	1.6	3

HUSSEIN M ALI

#	ARTICLE	IF	CITATIONS
19	Quantitative structure–activity relationship of a series of <i>N</i> â€Aryl <i>O</i> â€Aryl phosphoramidate insecticides. Environmental Toxicology and Chemistry, 1999, 18, 167-171.	4.3	5
20	Synthesis and bioactivity ofO-ethyl phosphorodiamidates derived from quinazolin-4-ones and either amino acid esters or fatty amines. Heteroatom Chemistry, 1999, 10, 455-460.	0.7	3
21	Synthesis and quantitative structure-activity relationship of a new series of chiral 4-alkoxycarbonyl-2-(alkylamino)-1,3,2-oxa or thiazaphospholidine-2-ones. Heteroatom Chemistry, 1999, 10, 475-480.	0.7	6
22	SYNTHESIS AND ANTICHOLINESTERASE ACTIVITY OF SOME OXAZAPHOSPHOLINE AND BENZO-1,3,2-DIOXAPHOSPHOLENE, DIAZAPHOSPHOLINE 2-ONES CONTAINING 2-AMINO ACID SUBSTITUTION. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 155, 157-166.	1.6	5
23	QUANTITATIVE STRUCTURE–ACTIVITY RELATIONSHIP OF A SERIES OF N-ARYL O-ARYL PHOSPHORAMIDATE INSECTICIDES. Environmental Toxicology and Chemistry, 1999, 18, 167.	4.3	6
24	Synthesis and Application of Some Dianilinosilanes, Bis (Trimethylsilyl) Phenylenediamines and Dialkyl Benzo-1,3,2-Diazasilolines as Antioxidants. Phosphorus, Sulfur and Silicon and the Related Elements, 1998, 134, 521-529.	1.6	2
25	Anilinosilanes as thermo-oxidation stabilizers of commercial lubricating base oils. Thermochimica Acta, 1997, 293, 185-190.	2.7	8
26	GC-ECD and GC-MS analyses of profenofos residues and its biochemical effects in tomatoes and tomato products. Journal of Agricultural and Food Chemistry, 1993, 41, 610-615.	5.2	39
27	Biochemical Effects of Profenofos Residues in Potatoes. Journal of Agricultural and Food Chemistry, 1992, 40, 1852-1855.	5.2	25
28	Application of palladium ferrocenyl amine sulfide complexes in the hydrogenation of carbon—carbon double and triple bonds. Journal of Molecular Catalysis, 1992, 77, 125-134.	1.2	5
29	Selective reduction of conjugated double bonds with molecular hydrogen and palladium(II) complexed to ferrocenylamine sulfide catalysts. Tetrahedron Letters, 1991, 32, 5489-5492.	1.4	18
30	Homogeneous selective hydrogenation of dienes and styrene derivatives by use of palladium ferrocenyl amine sulfide complexes as catalysts. Journal of Molecular Catalysis, 1991, 67, 47-56.	1.2	11
31	Syntheses of new chiral ferrocenylamine sulfide and selenide complexes of group X metals and their application to enantioselective cross-coupling reactions and selective hydrogenation. Journal of Molecular Catalysis, 1990, 60, 331-342.	1.2	14