Ismael GalvÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5517658/publications.pdf

Version: 2024-02-01

114

all docs

114 3,531 30 papers citations h-index

114

docs citations

h-index g-index

114 4447
times ranked citing authors

155592

55

#	Article	IF	CITATIONS
1	Partial least squares regression as an alternative to current regression methods used in ecology. Oikos, 2009, 118, 681-690.	1.2	568
2	Melanins and melanogenesis: from pigment cells toÂhuman health and technological applications. Pigment Cell and Melanoma Research, 2015, 28, 520-544.	1.5	347
3	Predator odour recognition and avoidance in a songbird. Functional Ecology, 2008, 22, 289-293.	1.7	144
4	An Intracellular Antioxidant Determines the Expression of a Melanin-Based Signal in a Bird. PLoS ONE, 2008, 3, e3335.	1.1	131
5	The expression of melanin-based plumage is separately modulated by exogenous oxidative stress and a melanocortin. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 3089-3097.	1.2	121
6	Chronic exposure to lowâ€dose radiation at <scp>C</scp> hernobyl favours adaptation to oxidative stress in birds. Functional Ecology, 2014, 28, 1387-1403.	1.7	119
7	Bird Integumentary Melanins: Biosynthesis, Forms, Function and Evolution. International Journal of Molecular Sciences, 2016, 17, 520.	1.8	98
8	Raman spectroscopy as a nonâ€invasive technique for the quantification of melanins in feathers and hairs. Pigment Cell and Melanoma Research, 2013, 26, 917-923.	1.5	68
9	Free Radical Exposure Creates Paler Carotenoid-Based Ornaments: A Possible Interaction in the Expression of Black and Red Traits. PLoS ONE, 2011, 6, e19403.	1.1	66
10	The evolution of eu―and pheomelanic traits may respond to an economy of pigments related to environmental oxidative stress. Pigment Cell and Melanoma Research, 2009, 22, 339-342.	1.5	65
11	Bird population declines due to radiation exposure at Chernobyl are stronger in species with pheomelanin-based coloration. Oecologia, 2011, 165, 827-835.	0.9	61
12	Color measurement of the animal integument predicts the content of specific melanin forms. RSC Advances, 2016, 6, 79135-79142.	1.7	61
13	Feather mites and birds: an interaction mediated by uropygial gland size?. Journal of Evolutionary Biology, 2008, 21, 133-144.	0.8	55
14	Has removal of excess cysteine led to the evolution of pheomelanin?. BioEssays, 2012, 34, 565-568.	1.2	52
15	Feather mite abundance increases with uropygial gland size and plumage yellowness in Great Tits Parus major. Ibis, 2006, 148, 687-697.	1.0	51
16	Dark pigmentation limits thermal niche position in birds. Functional Ecology, 2018, 32, 1531-1540.	1.7	50
17	The importance of white on black: unmelanized plumage proportion predicts display complexity in birds. Behavioral Ecology and Sociobiology, 2008, 63, 303-311.	0.6	47
18	Different roles of natural and sexual selection on senescence of plumage colour in the barn swallow. Functional Ecology, 2009, 23, 302-309.	1.7	46

#	Article	IF	Citations
19	Differential effects of vegetation restoration in Mediterranean abandoned cropland by secondary succession and pine plantations on bird assemblages. Forest Ecology and Management, 2010, 260, 87-95.	1.4	46
20	Sources of variation in uropygial gland size in European birds. Biological Journal of the Linnean Society, 2013, 110, 543-563.	0.7	46
21	Pheomelanin-Based Plumage Coloration Predicts Survival Rates in Birds. Physiological and Biochemical Zoology, 2013, 86, 184-192.	0.6	42
22	Ultravioletâ€blue reflectance of some nestling plumage patches mediates parental favouritism in great tits <i>Parus major</i> . Journal of Avian Biology, 2008, 39, 277-282.	0.6	41
23	Mate-feeding has evolved as a compensatory energetic strategy that affects breeding success in birds. Behavioral Ecology, 2011, 22, 1088-1095.	1.0	39
24	Brain size and the expression of pheomelaninâ€based colour in birds. Journal of Evolutionary Biology, 2011, 24, 999-1006.	0.8	36
25	Feather mites (Acari: Astigmata) and body condition of their avian hosts: a large correlative study. Journal of Avian Biology, 2012, 43, 273-279.	0.6	35
26	Vibrational characterization of pheomelanin and trichochrome F by Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 110, 55-59.	2.0	35
27	Melanin-based color variation in the Bearded Vulture suggests a thermoregulatory function. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2008, 149, 87-91.	0.8	34
28	Insects synthesize pheomelanin. Pigment Cell and Melanoma Research, 2015, 28, 599-602.	1.5	34
29	Melanin Chemistry and the Ecology of Stress. Physiological and Biochemical Zoology, 2015, 88, 352-355.	0.6	33
30	The cheek plumage patch is an amplifier of dominance in great tits. Biology Letters, 2008, 4, 12-15.	1.0	32
31	Variation in effects of male plumage ornaments: the case of Iberian Pied Flycatchers. Ibis, 2009, 151, 541-546.	1.0	32
32	Lowâ€quality birds do not display highâ€quality signals: The cysteineâ€pheomelanin mechanism of honesty. Evolution; International Journal of Organic Evolution, 2015, 69, 26-38.	1.1	32
33	Dispersive Raman spectroscopy allows the identification and quantification of melanin types. Ecology and Evolution, 2015, 5, 1425-1431.	0.8	32
34	Tropical bat as mammalian model for skin carotenoid metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10932-10937.	3.3	32
35	Antioxidant Machinery Differs between Melanic and Light Nestlings of Two Polymorphic Raptors. PLoS ONE, 2010, 5, e13369.	1.1	31
36	Wintering Snowy Owls <i>Bubo scandiacus</i> i>integrate plumage colour, behaviour and their environment to maximize efficacy of visual displays. Ibis, 2011, 153, 134-142.	1.0	29

#	Article	IF	CITATIONS
37	Intraspecific eye color variability in birds and mammals: a recent evolutionary event exclusive to humans and domestic animals. Frontiers in Zoology, 2017, 14, 53.	0.9	29
38	Porphyrins produce uniquely ephemeral animal colouration: a possible signal of virginity. Scientific Reports, 2016, 6, 39210.	1.6	25
39	Yolk testosterone shapes the expression of a melanin-based signal in great tits: an antioxidant-mediated mechanism?. Journal of Experimental Biology, 2010, 213, 3127-3130.	0.8	24
40	Repeatability of Feather Mite Prevalence and Intensity in Passerine Birds. PLoS ONE, 2014, 9, e107341.	1.1	23
41	Relationships between Hair Melanization, Glutathione Levels, and Senescence in Wild Boars. Physiological and Biochemical Zoology, 2012, 85, 332-347.	0.6	21
42	Plumage coloration can be perceived as a multiple conditionâ€dependent signal by Great Tits <i>Parus major</i> . Ibis, 2010, 152, 359-367.	1.0	19
43	Adaptive downregulation of pheomelaninâ€related <i>Slc7a11</i> gene expression by environmentally induced oxidative stress. Molecular Ecology, 2017, 26, 849-858.	2.0	19
44	High prevalence of cataracts in birds with pheomelanin-based colouration. Comparative Biochemistry and Physiology Part A, Molecular & Empty Integrative Physiology, 2012, 162, 259-264.	0.8	18
45	Long lifespans have evolved with long and monounsaturated fatty acids in birds. Evolution; International Journal of Organic Evolution, 2015, 69, 2776-2784.	1.1	18
46	Environmental constraints for plumage melanization in the northern goshawk <i>Accipiter gentilis</i> . Journal of Avian Biology, 2010, 41, 523-531.	0.6	17
47	Testicular melanization has evolved in birds with high mtDNA mutation rates. Journal of Evolutionary Biology, 2011, 24, 988-998.	0.8	17
48	Feather microstructure predicts size and colour intensity of a melanin-based plumage signal. Journal of Avian Biology, 2011, 42, 473-479.	0.6	17
49	Melanins in Fossil Animals: Is It Possible to Infer Life History Traits from the Coloration of Extinct Species?. International Journal of Molecular Sciences, 2018, 19, 230.	1.8	17
50	High levels of liver antioxidants are associated with life-history strategies characteristic of slow growth and high survival rates in birds. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2012, 182, 947-959.	0.7	16
51	On Showy Dwarfs and Sober Giants: Body Size as a Constraint for the Evolution of Bird Plumage Colouration. Acta Ornithologica, 2013, 48, 65-80.	0.1	16
52	Condition-dependence of pheomelanin-based coloration in nuthatches Sitta europaea suggests a detoxifying function: implications for the evolution of juvenile plumage patterns. Scientific Reports, 2017, 7, 9138.	1.6	16
53	Changes in melanocyte RNA and DNA methylation favour pheomelanin synthesis and may avoid systemic oxidative stress after dietary cysteine supplementation in birds. Molecular Ecology, 2019, 28, 1030-1042.	2.0	16
54	Predation risk determines pigmentation phenotype in nuthatches by melaninâ€related gene expression effects. Journal of Evolutionary Biology, 2018, 31, 1760-1771.	0.8	15

#	Article	lF	CITATIONS
55	Cheek Plumage Uniformity as a Social Status Signal in Great Tits. Annales Zoologici Fennici, 2009, 46, 271-282.	0.2	14
56	Melaninâ€based sexual dichromatism in the Western Palearctic avifauna implies darker males and lighter females. Journal of Avian Biology, 2018, 49, jav-01657.	0.6	14
57	Genetic favouring of pheomelaninâ€based pigmentation limits physiological benefits of coloniality in lesser kestrels <i>Falco naumanni</i> . Molecular Ecology, 2017, 26, 5594-5602.	2.0	13
58	Individual quality as sensitivity to cysteine availability in a melanin-based honest signalling system. Journal of Experimental Biology, 2017, 220, 2825-2833.	0.8	13
59	Raman spectroscopy quantification of eumelanin subunits in natural unaltered pigments. Pigment Cell and Melanoma Research, 2018, 31, 673-682.	1.5	13
60	High SLC7A11 expression in normal skin of melanoma patients. Cancer Epidemiology, 2019, 62, 101582.	0.8	13
61	Relationships between territory quality and carotenoid-based plumage colour, cell-mediated immune response, and body mass in Great Tit <i>Parus major</i> nestlings. Acta Ornithologica, 2009, 44, 139-150.	0.1	11
62	Ultraviolet-blue plumage colouration can be perceived as an indicator of fluctuating asymmetry by Blue Tits (Cyanistes caeruleus). Journal of Ornithology, 2011, 152, 223-230.	0.5	11
63	Pathogenic bacteria and timing of laying. Ecology and Evolution, 2015, 5, 1676-1685.	0.8	10
64	Females mate with males with diminished pheomelaninâ€based coloration in the Eurasian nuthatch <i>Sitta europaea</i> . Journal of Avian Biology, 2018, 49, e01854.	0.6	10
65	Pheomelanin synthesis varies with protein food abundance in developing goshawks. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2019, 189, 441-450.	0.7	10
66	Unprecedented high catecholamine production causing hair pigmentation after urinary excretion in red deer. Cellular and Molecular Life Sciences, 2019, 76, 397-404.	2.4	10
67	Intraspecific Kleptoparasitism in Lesser Black-backed Gulls Wintering Inland in Spain. Waterbirds, 2003, 26, 325-330.	0.2	9
68	Regional distribution patterns predict bird occurrence in Mediterranean cropland afforestations. Ecological Research, 2014, 29, 203-211.	0.7	9
69	Gyrfalcons Falco rusticolus adjust CTNS expression to food abundance: a possible contribution to cysteine homeostasis. Oecologia, 2017, 184, 779-785.	0.9	9
70	Complex Plumage Patterns Can Be Produced Only with the Contribution of Melanins. Physiological and Biochemical Zoology, 2017, 90, 600-604.	0.6	9
71	The bare head of the Northern bald ibis (Geronticus eremita) fulfills a thermoregulatory function. Frontiers in Zoology, 2017, 14, 15.	0.9	9
72	Feather content of porphyrins in Eurasian eagle owl (<i>Bubo bubo</i>) fledglings depends on body condition and breeding site quality. Integrative Zoology, 2018, 13, 569-578.	1.3	9

#	Article	IF	CITATIONS
73	Sexual dichromatism and condition-dependence in the skin of a bat. Journal of Mammalogy, 2019, 100, 299-307.	0.6	9
74	A recent shift in the pigmentation phenotype of a wild Neotropical primate. Mammalian Biology, 2019, 94, 66-68.	0.8	9
75	LC-MS determination of catecholamines and related metabolites in red deer urine and hair extracted using magnetic multi-walled carbon nanotube poly(styrene-co-divinylbenzene) composite. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1136, 121878.	1.2	9
76	Bird species in Mediterranean pine plantations exhibit different characteristics to those in natural reforested woodlands. Oecologia, 2011, 166, 305-316.	0.9	8
77	The Rusty Plumage Coloration of Juvenile Gyrfalcons is Produced by Pheomelanin and its Expression is Affected by an Intracellular Antioxidant. Journal of Raptor Research, 2015, 49, 59-65.	0.2	8
78	Pheomelanin molecular vibration is associated with mitochondrial ROS production in melanocytes and systemic oxidative stress and damage. Integrative Biology (United Kingdom), 2017, 9, 751-761.	0.6	8
79	Solar and terrestrial radiations explain continental-scale variation in bird pigmentation. Oecologia, 2018, 188, 683-693.	0.9	8
80	Juvenile pheomelaninâ€based plumage coloration has evolved more frequently in carnivorous species. Ibis, 2020, 162, 238-244.	1.0	8
81	Black bib size is associated with feather content of pheomelanin in male house sparrows. Pigment Cell and Melanoma Research, 2014, 27, 1159-1161.	1.5	7
82	Buthionine sulfoximine diverts the melanogenesis pathway toward the production of more soluble and degradable pigments. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2150-2154.	1.0	7
83	Increase of the benzothiazole moiety content of pheomelanin pigment after endogenous free radical inducement. Dyes and Pigments, 2020, 180, 108516.	2.0	7
84	Novel Non-Invasive Quantification and Imaging of Eumelanin and DHICA Subunit in Skin Lesions by Raman Spectroscopy and MCR Algorithm: Improving Dysplastic Nevi Diagnosis. Cancers, 2022, 14, 1056.	1.7	7
85	Age-related Spatial Segregation of Great Cormorants in a Roost. Waterbirds, 2004, 27, 377-381.	0.2	6
86	On silver wings: a fragile structural mechanism increases plumage conspicuousness. Journal of Avian Biology, 2009, 40, 475-480.	0.6	6
87	Odor Transmission and Olfaction. Condor, 2013, 115, 693-699.	0.7	6
88	Models for human porphyrias: Have animals in the wild been overlooked?. BioEssays, 2020, 42, e2000155.	1.2	6
89	Impairment of mixed melanin-based pigmentation in parrots. Journal of Experimental Biology, 2020, 223,	0.8	6
90	Pheomelanin subunit non-destructive quantification by Raman spectroscopy and multivariate curve resolution-alternating least squares (MCR-ALS). Chemometrics and Intelligent Laboratory Systems, 2021, 217, 104406.	1.8	6

#	Article	IF	CITATIONS
91	The origin of Lesser Blackâ€backed Gulls <i>Larus fuscus</i> wintering in central Iberia. Ringing and Migration, 2003, 21, 209-214.	0.2	5
92	Natural radioactivity can explain clinal variation in the expression of melanin-based traits. Evolutionary Ecology, 2011, 25, 1197-1203.	0.5	5
93	Molecular vibration as a novel explanatory mechanism for the expression of animal colouration. Integrative Biology (United Kingdom), 2018, 10, 464-473.	0.6	5
94	Exposure to a competitive social environment activates an epigenetic mechanism that limits pheomelanin synthesis in zebra finches. Molecular Ecology, 2019, 28, 3698-3708.	2.0	5
95	Unique evolution of vitamin A as an external pigment in tropical starlings. Journal of Experimental Biology, 2019, 222, .	0.8	5
96	Evolutionary physiology at 30+: Has the promise been fulfilled?. BioEssays, 2021, 44, 2100167.	1.2	5
97	Contrasted effects of an oxidative challenge and α-melanocyte-stimulating hormone on cellular immune responsiveness: an experiment with red-legged partridges Alectoris rufa. Oecologia, 2012, 169, 385-394.	0.9	4
98	Intensity of Melanin-Based Color and Risk of Predation in the Barn Swallow <i>Hirundo rustica</i> Acta Ornithologica, 2014, 49, 47-56.	0.1	4
99	Dispersal capacity explains the evolution of lifespan variability. Ecology and Evolution, 2018, 8, 4949-4957.	0.8	4
100	Behavioural Ecology of Raptors. , 2018, , 33-62.		4
100	Behavioural Ecology of Raptors., 2018,, 33-62. A source of exogenous oxidative stress improves oxidative status and favors pheomelanin synthesis in zebra finches. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 228, 108667.	1.3	4
	A source of exogenous oxidative stress improves oxidative status and favors pheomelanin synthesis in zebra finches. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020,	1.3	
101	A source of exogenous oxidative stress improves oxidative status and favors pheomelanin synthesis in zebra finches. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 228, 108667. Tentâ€roosting may have driven the evolution of yellow skin coloration in Stenodermatinae bats.		4
101	A source of exogenous oxidative stress improves oxidative status and favors pheomelanin synthesis in zebra finches. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 228, 108667. Tentâ€roosting may have driven the evolution of yellow skin coloration in Stenodermatinae bats. Journal of Zoological Systematics and Evolutionary Research, 2020, 58, 519-527. Detection of Porphyrins in Hair Using Capillary Liquid Chromatography-Mass Spectrometry.	0.6	4
101 102 103	A source of exogenous oxidative stress improves oxidative status and favors pheomelanin synthesis in zebra finches. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 228, 108667. Tentâ€roosting may have driven the evolution of yellow skin coloration in Stenodermatinae bats. Journal of Zoological Systematics and Evolutionary Research, 2020, 58, 519-527. Detection of Porphyrins in Hair Using Capillary Liquid Chromatography-Mass Spectrometry. International Journal of Molecular Sciences, 2022, 23, 6230.	0.6	4 3
101 102 103	A source of exogenous oxidative stress improves oxidative status and favors pheomelanin synthesis in zebra finches. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 228, 108667. Tentâ€roosting may have driven the evolution of yellow skin coloration in Stenodermatinae bats. Journal of Zoological Systematics and Evolutionary Research, 2020, 58, 519-527. Detection of Porphyrins in Hair Using Capillary Liquid Chromatography-Mass Spectrometry. International Journal of Molecular Sciences, 2022, 23, 6230. Migration Strategies of the Great Cormorant Wintering Inland in Spain. Waterbirds, 2005, 28, 301-307. Evidence of evolutionary optimization of fatty acid length and unsaturation. Journal of Evolutionary	0.6 1.8 0.2	4 3 2
101 102 103 104	A source of exogenous oxidative stress improves oxidative status and favors pheomelanin synthesis in zebra finches. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 228, 108667. Tentâ€roosting may have driven the evolution of yellow skin coloration in Stenodermatinae bats. Journal of Zoological Systematics and Evolutionary Research, 2020, 58, 519-527. Detection of Porphyrins in Hair Using Capillary Liquid Chromatography-Mass Spectrometry. International Journal of Molecular Sciences, 2022, 23, 6230. Migration Strategies of the Great Cormorant Wintering Inland in Spain. Waterbirds, 2005, 28, 301-307. Evidence of evolutionary optimization of fatty acid length and unsaturation. Journal of Evolutionary Biology, 2018, 31, 172-176. Adaptive plumage wear for increased crypsis in the plumage of Palearctic larks (Alaudidae). Ecology,	0.6 1.8 0.2	4 3 2 2

#	Article	IF	CITATIONS
109	Physiological compartmentalization as a possible cause of phylogenetic signal loss: an example involving melanin-based pigmentation. Biological Journal of the Linnean Society, 2018, 125, 760-765.	0.7	1
110	Differential influence of Slc7a11 expression and body condition on pheomelaninâ€based pigmentation in two Eurasian nuthatch Sitta europaea populations with different predation risk. Journal of Avian Biology, 2020, 51, .	0.6	1
111	Activity patterns of collared pratincoles Glareola pratincola in a breeding colony. Animal Biodiversity and Conservation, 2017, 40, 147-152.	0.3	1
112	Adaptive Plumage Wear for Increased Crypsis in the Plumage of Palearctic Larks (Alaudidae). Bulletin of the Ecological Society of America, 2019, 100, e01587.	0.2	0
113	A Negative Association between Melanin-Based Plumage Color Heterogeneity and Intensity in Birds. Physiological and Biochemical Zoology, 2019, 92, 266-273.	0.6	0
114	Slc7a11 downregulation is rapidly reversed after cessation of competitive social stress in zebra finches. Molecular Biology Reports, 2021, 48, 3007-3010.	1.0	0