
Roberto Sanchez-Olea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5517619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthetic negative genome screen of theÂGPN-loop GTPaseÂNPA3 in Saccharomyces cerevisiae. Current Genetics, 2022, 68, 343-360.	1.7	3
2	<scp>FRET</scp> â€based analysis and molecular modeling of the human <scp>GPN</scp> â€loop <scp>GTP</scp> ases 1 and 3 heterodimer unveils a dominantâ€negative protein complex. FEBS Journal, 2019, 286, 4797-4818.	4.7	7
3	Gpn3 Is Essential for Cell Proliferation of Breast Cancer Cells Independent of Their Malignancy Degree. Technology in Cancer Research and Treatment, 2019, 18, 153303381987082.	1.9	8
4	Human Gpn1 purified from bacteria binds guanine nucleotides and hydrolyzes GTP as a protein dimer stabilized by its C-terminal tail. Protein Expression and Purification, 2017, 132, 85-96.	1.3	3
5	Npa3/ScGpn1 carboxy-terminal tail is dispensable for cell viability and RNA polymerase II nuclear targeting but critical for microtubule stability and function. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 451-462.	4.1	15
6	Gpn3 is polyubiquitinated on lysine 216 and degraded by the proteasome in the cell nucleus in a Gpn1â€inhibitable manner. FEBS Letters, 2017, 591, 3757-3770.	2.8	2
7	The Gpn3 Q279* cancerâ€associated mutant inhibits Gpn1 nuclear export and is deficient in <scp>RNA</scp> polymerase <scp>II</scp> nuclear targeting. FEBS Letters, 2017, 591, 3555-3566.	2.8	4
8	Gpn1 and Gpn3 associate tightly and their protein levels are mutually dependent in mammalian cells. FEBS Letters, 2014, 588, 3823-3829.	2.8	11
9	A nuclear export sequence in GPN-loop GTPase 1, an essential protein for nuclear targeting of RNA polymerase II, is necessary and sufficient for nuclear export. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1756-1766.	4.1	26
10	Parcs/Gpn3 is required for the nuclear accumulation of RNA polymerase II. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1708-1716.	4.1	34
11	Depression of Intraocular Pressure Following Inactivation of Connexin43 in the Nonpigmented Epithelium of the Ciliary Body. , 2009, 50, 2185.		29
12	Environmental toxicity, oxidative stress and apoptosis: Ménage à Trois. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2009, 674, 3-22.	1.7	438
13	Molecular pathways involved in cell death after chemically induced DNA damage. Exs, 2009, 99, 209-230.	1.4	4
14	Parcs Is a Dual Regulator of Cell Proliferation and Apaf-1 Function. Journal of Biological Chemistry, 2008, 283, 24400-24405.	3.4	11
15	To Kill or to Arrest: That Is the New Question for Apaf-1. Molecular Cell, 2007, 28, 520-521.	9.7	1
16	Solution structure of Apaf-1 CARD and its interaction with caspase-9 CARD: A structural basis for specific adaptor/caspase interaction. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11265-11270.	7.1	139
17	Characterization of pICIn binding proteins: identification of p17 and assessment of the role of acidic domains in mediating protein–protein interactions. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1404, 321-328.	4.1	18
18	Characterization of pICln phosphorylation state and a pICln-associated protein kinase. Biochimica Et Biophysica Acta - General Subjects, 1998, 1381, 49-60.	2.4	18

ROBERTO SANCHEZ-OLEA

#	Article	IF	CITATIONS
19	Recombinant pICln Forms Highly Cation-selective Channels when Reconstituted into Artificial and Biological Membranes. Journal of General Physiology, 1998, 112, 727-736.	1.9	42
20	Inhibition by Cl? channel blockers of the volume-activated, diffusional mechanism of inositol transport in primary astrocytes in culture. Neurochemical Research, 1995, 20, 895-900.	3.3	20
21	Inhibition by dihydropyridines of regulatory volume decrease and osmolyte fluxes in cultured astrocytes is unrelated to extracellular calcium. Neuroscience Letters, 1995, 193, 165-168.	2.1	16
22	Volume Regulation in Cultured Neurons: Pivotal Role of Taurine. Advances in Experimental Medicine and Biology, 1994, 359, 317-323.	1.6	8
23	Contribution of organic and inorganic osmolytes to volume regulation in rat brain cells in culture. Neurochemical Research, 1993, 18, 445-452.	3.3	100
24	Neurons respond to hyposmotic conditions by an increase in intracellular free calcium. Neurochemical Research, 1993, 18, 147-152.	3.3	18
25	Inhibition of volume regulation and efflux of osmoregulatory amino acids by blockers of Clâ^' transport in cultured astrocytes. Neuroscience Letters, 1993, 156, 141-144.	2.1	101
26	Changes in taurine transport evoked by hyperosmolarity in cultured astrocytes. Journal of Neuroscience Research, 1992, 32, 86-92.	2.9	42
27	Volume Regulatory Fluxes in Glial and Renal Cells. Advances in Experimental Medicine and Biology, 1992, 315, 361-368.	1.6	5
28	Taurine and Volume Regulation in Isolated Nerve Endings. Advances in Experimental Medicine and Biology, 1992, 315, 381-384.	1.6	2
29	Hyperosmolarity and Taurine Content, Uptake and Release in Astrocytes. Advances in Experimental Medicine and Biology, 1992, 315, 385-389.	1.6	1
30	Taurine release associated to volume regulation in rabbit lymphocytes. Journal of Cellular Biochemistry, 1991, 45, 207-212.	2.6	26
31	Hyposmolarityâ€induced taurine release in cerebellar granule cells is associated with diffusion and not with highâ€affinity transport. Journal of Neuroscience Research, 1991, 30, 661-665.	2.9	66
32	Osmolarity-sensitive release of free amino acids from cultured kidney cells (MDCK). Journal of Membrane Biology, 1991, 121, 1-9.	2.1	61
33	Chloride dependence of the K+-stimulated release of taurine from synaptosomes. Neurochemical Research, 1990, 15, 535-540.	3.3	18