
Miguel MartÃ-nez-Trujillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5517560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving transformation efficiency ofArabidopsis thaliana by modifying the floral dip method. Plant Molecular Biology Reporter, 2004, 22, 63-70.	1.8	129
2	Phosphate relieves chromium toxicity in Arabidopsis thaliana plants by interfering with chromate uptake. BioMetals, 2014, 27, 363-370.	4.1	48
3	<i>Trichoderma atroviride</i> â€emitted volatiles improve growth of <i>Arabidopsis</i> seedlings through modulation of sucrose transport and metabolism. Plant, Cell and Environment, 2021, 44, 1961-1976.	5.7	31
4	Arabidopsis thaliana sucrose phosphate synthase (sps) genes are expressed differentially in organs and tissues, and their transcription is regulated by osmotic stress. Gene Expression Patterns, 2017, 25-26, 92-101.	0.8	30
5	Chromate alters root system architecture and activates expression of genes involved in iron homeostasis and signaling in Arabidopsis thaliana. Plant Molecular Biology, 2014, 86, 35-50.	3.9	22
6	Chromate induces adventitious root formation via auxin signalling and SOLITARY-ROOT/IAA14 gene function in Arabidopsis thaliana. BioMetals, 2015, 28, 353-365.	4.1	21
7	An Updated Review on the Modulation of Carbon Partitioning and Allocation in Arbuscular Mycorrhizal Plants. Microorganisms, 2022, 10, 75.	3.6	19
8	YUCCA4 overexpression modulates auxin biosynthesis and transport and influences plant growth and development via crosstalk with abscisic acid in Arabidopsis thaliana. Genetics and Molecular Biology, 2020, 43, e20190221.	1.3	18
9	Effect of mineral nutrients on the uptake of Cr(VI) by maize plants. New Biotechnology, 2015, 32, 396-402.	4.4	14
10	Fungal diversity in the roots of four epiphytic orchids endemic to Southwest Mexico is related to the breadth of plant distribution. Rhizosphere, 2018, 7, 49-56.	3.0	13
11	Mutation of <i><scp>MEDIATOR</scp> 18</i> and chromate trigger twinning of the primary root meristem in <i>Arabidopsis</i> . Plant, Cell and Environment, 2020, 43, 1989-1999.	5.7	13
12	Sucrose Protects Arabidopsis Roots from Chromium Toxicity Influencing the Auxin–Plethora Signaling Pathway and Improving Meristematic Cell Activity. Journal of Plant Growth Regulation, 2018, 37, 530-538.	5.1	9
13	Differential strategies of two species of arbuscular mycorrhizal fungi in the protection of maize plants grown in chromium-contaminated soils. BioMetals, 2021, 34, 1247-1261.	4.1	8
14	Temporal root responses in Arabidopsis thaliana L. to chromate reveal structural and regulatory mechanisms involving the SOLITARY ROOT/IAA14 repressor for maintenance of identity meristem genes. Plant Growth Regulation, 2018, 86, 251-262.	3.4	5
15	Germline Variants in Cancer Genes from Young Breast Cancer Mexican Patients. Cancers, 2022, 14, 1647.	3.7	5
16	Total Chromium Captured by Maize (<i>Zea Mays</i>) Plants is Increased by Phosphate and Iron Supplementation in the Soil. Communications in Soil Science and Plant Analysis, 2018, 49, 615-625.	1.4	4
17	Parámetros genéticos de caracteres de crecimiento en un ensayo de progenies de Pinus oocarpa. Madera Bosques, 2020, 26, .	0.2	4
18	Traumatic ducts size varies genetically and is positively associated to resin yield of <i>Pinus oocarpa</i> open-pollinated progenies. Silvae Genetica, 2022, 71, 10-19.	0.8	2

#	Article	IF	CITATIONS
19	Changes induced by lead in root system architecture of Arabidopsis seedlings are mediated by PDR2-LPR1/2 phosphate dependent way. BioMetals, 2021, 34, 603-620.	4.1	Ο

Characterization of mycorrhizal fungi of the genus Tulasnella (Tulasnellaceae,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 707 Td (Basid 0.4 0

Reserve, Mexico. Anales Del Jardin Botanico De Madrid, 2018, 75, 075.