Jihua Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5517264/publications.pdf

Version: 2024-02-01

		126901	175241
166	3,989	33	52
papers	citations	h-index	g-index
166	166	166	2093
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process. Journal of Alloys and Compounds, 2011, 509, 891-898.	5 . 5	193
2	Microstructures and mechanical property of laser butt welding of titanium alloy to stainless steel. Materials & Design, 2014, 53, 504-511.	5.1	171
3	Hybrid fiber laser – Arc welding of thick section high strength low alloy steel. Materials & Design, 2011, 32, 3399-3413.	5.1	148
4	Influence of processing parameters on the characteristics of stainless steel/copper laser welding. Journal of Materials Processing Technology, 2015, 222, 43-51.	6. 3	141
5	Improving interfacial reaction nonhomogeneity during laser welding–brazing aluminum to titanium. Materials & Design, 2011, 32, 4408-4416.	5.1	120
6	Microstructural Characteristics of a Stainless Steel/Copper Dissimilar Joint Made by Laser Welding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 3690-3696.	2.2	103
7	Joints of carbon fiber-reinforced SiC composites to Ti-alloy brazed by Ag–Cu–Ti short carbon fibers. Journal of Materials Processing Technology, 2007, 189, 256-261.	6.3	94
8	Interaction Between the Growth and Dissolution of Intermetallic Compounds in the Interfacial Reaction Between Solid Iron and Liquid Aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5088-5100.	2.2	77
9	Microstructures and mechanical properties of Cf/SiC composite and TC4 alloy joints brazed with (Ti–Zr–Cu–Ni)+W composite filler materials. Composites Science and Technology, 2014, 97, 19-26.	7.8	76
10	Influence of a Ni-foil interlayer on Fe/Al dissimilar joint by laser penetration welding. Materials Letters, 2012, 79, 296-299.	2.6	75
11	Interface microstructure and fracture behavior of single/dual-beam laser welded steel-Al dissimilar joint produced with copper interlayer. International Journal of Advanced Manufacturing Technology, 2016, 82, 631-643.	3.0	71
12	Microstructure and mechanical properties of 5052 aluminum alloy/mild steel butt joint achieved by MIG-TIG double-sided arc welding-brazing. Materials and Design, 2017, 123, 69-79.	7.0	65
13	Growth kinetics and thickness prediction of interfacial intermetallic compounds between solid steel and molten aluminum based on thermophysical simulation in a few seconds. Materials Characterization, 2017, 132, 413-421.	4.4	65
14	Phase structure and thermophysical properties of co-doped La2Zr2O7 ceramics for thermal barrier coatings. Ceramics International, 2012, 38, 3607-3612.	4.8	63
15	Microstructures and mechanical properties of copper-stainless steel butt-welded joints by MIG-TIG double-sided arc welding. Journal of Materials Processing Technology, 2019, 265, 87-98.	6. 3	62
16	Study on MIG-TIG double-sided arc welding-brazing of aluminum and stainless steel. Materials Letters, 2016, 172, 146-148.	2.6	59
17	First-principles calculations on wetting interface between Ag-Cu-Ti filler metal and SiC ceramic: Ag (1†1†1)/SiC (1†1†1) interface and Ag (1†1†1)/TiC (1†1†1) interface. Applied Surface Science, 2	2018; 462,	55 -5 34.
18	Microstructures and Mechanical Properties of Laser Penetration Welding Joint With/Without Ni-Foil in an Overlap Steel-on-Aluminum Configuration. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 3064-3073.	2.2	50

#	Article	IF	CITATIONS
19	First-principles investigation on the electronic property and bonding configuration of NbC (111)/NbN (111) interface. Journal of Alloys and Compounds, 2016, 689, 874-884.	5. 5	50
20	Influence of welding parameters on the IMCs and the mechanical properties of Ti/Al butt joints welded by MIG/TIG double-sided arc welding-brazing. Journal of Alloys and Compounds, 2018, 747, 764-771.	5.5	48
21	Microstructures and properties of double-ceramic-layer thermal barrier coatings of La2(Zr0.7Ce0.3)2O7/8YSZ made by atmospheric plasma spraying. Applied Surface Science, 2015, 340, 173-181.	6.1	46
22	Nanoscale structures of the interfacial reaction layers between molten aluminium and solid steel based on thermophysical simulations. Journal of Alloys and Compounds, 2018, 739, 184-189.	5.5	43
23	Interfacial microstructures and mechanical property of vaporizing foil actuator welding of aluminum alloy to steel. Materials Science & Dipineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 659, 12-21.	5.6	42
24	Pore structures of high-porosity NiTi alloys made from elemental powders with NaCl temporary space-holders. Materials Letters, 2009, 63, 2402-2404.	2.6	40
25	Influence of interfacial reaction on reactive wettability of molten Ag-Cu-Xâ€wt.%Ti ï¬ller metal on SiC ceramic substrate and mechanism analysis. Applied Surface Science, 2018, 436, 768-778.	6.1	40
26	Butt welding-brazing of steel to aluminum by hybrid laser-CMT. Journal of Materials Processing Technology, 2019, 272, 163-169.	6.3	40
27	Reactive composite brazing of C/C composite and GH3044 with Ag–Ti mixed powder filler material. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 303-312.	5.6	39
28	Microstructure and mechanical properties of the TIG welded joints of fusion CLAM steel. Fusion Engineering and Design, 2010, 85, 1903-1908.	1.9	37
29	Behavior and mechanism of the stress buffer effect of the inside ceramic layer to the top ceramic layer in a double-ceramic-layer thermal barrier coating. Ceramics International, 2014, 40, 2901-2914.	4.8	37
30	Combined effects of MIG and TIG arcs on weld appearance and interface properties in Al/steel double-sided butt welding-brazing. Journal of Materials Processing Technology, 2017, 250, 25-34.	6.3	37
31	Superplastic deformation mechanism and mechanical behavior of a laser-welded Ti–6Al–4V alloy joint. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 541, 110-119.	5.6	36
32	Study on welding–brazing of copper and stainless steel using tungsten/metal gas suspended arc welding. Materials Letters, 2015, 156, 7-9.	2.6	35
33	Effect of thermal-shearing cycling on Ag3Sn microstructural coarsening in SnAgCu solder. Journal of Alloys and Compounds, 2009, 469, 102-107.	5.5	34
34	A parametric study of the double-ceramic-layer thermal barrier coatings part I: Optimization design of the ceramic layer thickness ratio based on the finite element analysis of thermal insulation (take) Tj ETQq0 0 0 rg	BT4/ ® verlo	ock:10 Tf 50
35	A Transient Liquid Phase Sintering Bonding Process Using Nickel-Tin Mixed Powder for the New Generation of High-Temperature Power Devices. Journal of Electronic Materials, 2017, 46, 4152-4159.	2.2	33
36	Microstructure and properties of TiC–Fe cermet coatings by reactive flame spraying using asphalt as carbonaceous precursor. Ceramics International, 2007, 33, 827-835.	4.8	32

#	Article	IF	CITATIONS
37	A parametric study of the Double-Ceramic-Layer Thermal Barrier Coating Part II: Optimization selection of mechanical parameters of the inside ceramic layer based on the effect on the stress distribution. Surface and Coatings Technology, 2014, 238, 93-117.	4.8	32
38	First-principles calculations on interface structure and fracture characteristic of TiC/TiZrC nano-multilayer film based on virtual crystal approximation. Journal of Alloys and Compounds, 2018, 755, 211-223.	5.5	32
39	Influence of substrates on the structural and optical properties of ammonia-free chemically deposited CdS films. Journal of Alloys and Compounds, 2012, 530, 81-84.	5.5	31
40	First-principles calculations on structural energetics of Cu-Ti binary system intermetallic compounds in Ag-Cu-Ti and Cu-Ni-Ti active filler metals. Ceramics International, 2017, 43, 7751-7761.	4.8	31
41	Active brazing of carbon fiber reinforced SiC composite and 304 stainless steel with Ti–Zr–Be. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 617, 66-72.	5.6	30
42	Microstructure evolution and mechanical properties of in-situ bimodal TiC-Fe coatings prepared by reactive plasma spraying. Ceramics International, 2019, 45, 5848-5857.	4.8	30
43	Laser penetration welding of an overlap titanium-on-aluminum configuration. International Journal of Advanced Manufacturing Technology, 2016, 87, 3069-3079.	3.0	29
44	First-principles calculations on Ni/W interfaces in Steel/Ni/W hot isostatic pressure diffusion bonding layer. Applied Surface Science, 2019, 475, 906-916.	6.1	29
45	Synthesis kinetics and thermophysical properties of La2(Zr0.7Ce0.3)2O7 ceramic for thermal barrier coatings. Journal of Rare Earths, 2012, 30, 228-232.	4.8	26
46	Application of Johnson-Mehl-Avrami-Kolmogorov type equation in non-isothermal phase process: Re-discussion. Materials Letters, 2016, 181, 240-243.	2.6	25
47	Interfacial characteristics of Ti/Al joint by vaporizing foil actuator welding. Journal of Materials Processing Technology, 2019, 263, 73-81.	6.3	25
48	Microstructure and wear properties of Fe–6wt.%Cr–0.55wt.%C–Xwt.%Nb laser cladding coating and the mechanism analysis. Materials and Design, 2015, 88, 1031-1041.	7.0	24
49	The influence of interface morphology on the stress distribution in double-ceramic-layer thermal barrier coatings. Ceramics International, 2015, 41, 4312-4325.	4.8	24
50	A novel composite-diffusion brazing process based on transient liquid phase bonding of a Cf/SiC composite to Ti-6Al-4V. Ceramics International, 2017, 43, 13009-13012.	4.8	24
51	Composite brazing of C/C composite and Ni-based superalloy using (Ag-10Ti)+TiC filler material. Journal of Materials Processing Technology, 2021, 288, 116886.	6.3	24
52	Joining of C f /SiC composite to Ti-6Al-4V with (Ti-Zr-Cu-Ni)+Ti filler based on in-situ alloying concept. Ceramics International, 2017, 43, 4151-4158.	4.8	23
53	Interfacial microstructure evolution and mechanical properties of TC4 alloy/304 stainless steel joints with different joining modes. Journal of Manufacturing Processes, 2018, 36, 115-125.	5.9	23
54	Interfacial ferrite band formation to suppress intergranular liquid copper penetration of solid steel. Journal of Alloys and Compounds, 2019, 773, 719-729.	5.5	23

#	Article	IF	CITATIONS
55	MIG-TIG double-sided arc welding of copper-stainless steel using different filler metals. Journal of Manufacturing Processes, 2020, 55, 208-219.	5.9	23
56	Microstructures of cerium added laser weld of a TiNi alloy. Materials Letters, 2008, 62, 1551-1553.	2.6	22
57	An investigation on butt joints of Ti6Al4V and 5A06 using MIG/TIG double-side arc welding-brazing. Journal of Manufacturing Processes, 2017, 27, 221-225.	5.9	22
58	Microstructural mechanism and mechanical properties of Cf/SiC composite/TC4 alloy joints composite-diffusion brazed with TiZrCuNi†+†TiCp composite filler. Materials Science & Dineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 728, 1-9.	5.6	22
59	Effect mechanism of Ni coating layer on the characteristics of Al/steel dissimilar metal brazing. Materials Characterization, 2020, 167, 110518.	4.4	22
60	Influence of Fe-W intermetallic compound on fracture behavior of Steel/Tungsten HIP diffusion bonding joint: Experimental investigation and first-principles calculation. Journal of Manufacturing Processes, 2020, 55, 131-142.	5.9	22
61	Joining of C _f /SiC composite to Ti alloy using composite filler materials. Materials Science and Technology, 2009, 25, 1046-1050.	1.6	21
62	Optimization selection of the thermal conductivity of the top ceramic layer in the Double-Ceramic-Layer Thermal Barrier Coatings based on the finite element analysis of thermal insulation. Surface and Coatings Technology, 2014, 240, 320-326.	4.8	21
63	Phase evolution and mechanical properties of coarse-grained heat affected zone of a Cu-free high strength low alloy hull structure steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 718, 437-448.	5.6	21
64	Interfacial structure and properties of Cu/Al joints brazed with Zn-Al filler metals. Materials Characterization, 2018, 138, 78-88.	4.4	20
65	A new partial transient liquid-phase bonding process with powder-mixture interlayer for bonding Cf/SiC composite and Ti–6Al–4V alloy. Materials Letters, 2015, 143, 237-240.	2.6	19
66	First-principles calculations on physical properties of Ni3Sn binary system intermetallic compounds and Ni/Ni3Sn interfaces in Nickel-Tin TLPS bonding layer. Intermetallics, 2018, 101, 27-38.	3.9	19
67	Microstructure and properties of in-situ Ti5Si3-TiC composite coatings by reactive plasma spraying. Applied Surface Science, 2020, 508, 145264.	6.1	19
68	Interfacial structure and formation mechanism of tungsten/steel HIP diffusion bonding joints using Ni interlayer. Journal of Manufacturing Processes, 2020, 52, 235-246.	5.9	19
69	Effect of welding speed on the material flow patterns in friction stir welding of AZ31 magnesium alloy. Rare Metals, 2007, 26, 158-162.	7.1	18
70	LaAlO3 as the heterogeneous nucleus of ferrite: Experimental investigation and theoretical calculation. Journal of Alloys and Compounds, 2016, 683, 357-369.	5.5	17
71	Butt brazing of titanium alloys/stainless steel plates by MIG-TIG double-sided arc welding process with copper filler metal. Journal of Materials Research and Technology, 2019, 8, 1566-1570.	5.8	17
72	Investigation on wetting behavior and mechanism of AgCu-Xwt.%Ti filler metal/AlN ceramic reactive wetting system: Experiments and first-principles calculations. Journal of Alloys and Compounds, 2021, 869, 159323.	5 . 5	16

#	Article	IF	CITATIONS
73	Joints of Cf/SiC Composite to Ti-Alloy with <i>In-Situ</i> Synthesized TiC <i>_x</i> Improved Brazing Layers. Materials Transactions, 2006, 47, 1261-1263.	1.2	15
74	Reactive flame spraying of TiC–Fe cermet coating using asphalt as a carbonaceous precursor. Surface and Coatings Technology, 2006, 200, 5328-5333.	4.8	15
75	Brazing of 6061 aluminum alloy with the novel Al-Si-Ge-Zn filler metal. Materials Letters, 2016, 179, 47-51.	2.6	15
76	Correlation between microstructure and mechanical properties of active brazed Cf/SiC composite joints using Ti-Zr-Be. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 667, 332-339.	5.6	15
77	Interfacial reaction between solid Ni and liquid Al in tens of seconds: Dissolution kinetics of solid Ni and formation of intermetallic compounds. Materials Characterization, 2020, 159, 110043.	4.4	15
78	Influence of heat input on the intermetallic compound characteristics and fracture mechanisms of titanium-stainless steel MIG-TIG double-sided arc welding joints. Intermetallics, 2020, 127, 106973.	3.9	15
79	PTA clad (Cr, Fe)7C3 \hat{I}^3 -Fe in situ ceramal composite coating. International Journal of Minerals, Metallurgy, and Materials, 2006, 13, 538-541.	0.2	14
80	Mechanical properties of additive laser-welded NiTi alloy. Materials Letters, 2010, 64, 628-631.	2.6	14
81	Effect of Holding Time on Microstructure and Properties of Transient Liquid-Phase-Bonded Joints of a Single Crystal Alloy. Journal of Materials Engineering and Performance, 2015, 24, 2287-2293.	2.5	14
82	Preparation and Properties of a Novel Al-Si-Ge-Zn Filler Metal for Brazing Aluminum. Journal of Materials Engineering and Performance, 2015, 24, 2327-2334.	2.5	14
83	Reactive wetting behavior and mechanism of AlN ceramic by CuNi-Xwt%Ti active filler metal. Ceramics International, 2020, 46, 4289-4299.	4.8	14
84	Reactive composite-diffusing brazing of Cf/SiC composite and stainless steel with (Cu–15Ti)+C filler material. Materials Science & Degraphic Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 788, 139582.	5.6	14
85	Friction stir butt welding of magnesium alloy to steel by truncated cone-shaped stirring pin with threads. Journal of Materials Processing Technology, 2021, 291, 117038.	6.3	14
86	Studies of Cu-Sn interdiffusion coefficients in Cu3Sn and Cu6Sn5 based on the growth kinetics. Scripta Materialia, 2021, 204, 114138.	5.2	14
87	Reactive thermal spraying of TiC-Fe composite coating by using asphalt as carbonaceous precursor. Journal of Materials Science, 2005, 40, 4149-4151.	3.7	13
88	Microstructure and properties of TiC–Fe36Ni cermet coatings by reactive plasma spraying using sucrose as carbonaceous precursor. Applied Surface Science, 2008, 254, 6687-6692.	6.1	13
89	InÂSitu TiC-Reinforced Ni-Based Composite Coating Prepared by Flame Spraying Using Sucrose as the Source of Carbon. Journal of Thermal Spray Technology, 2009, 18, 103-109.	3.1	13
90	Microstructure of cermet coating prepared by plasma spraying of Fe–Ti–C powder using sucrose as carbonaceous precursor. Journal of Alloys and Compounds, 2009, 472, L1-L5.	5.5	13

#	Article	IF	Citations
91	Microstructure and superplasticity of laser welded Ti–6Al–4V alloy. Materials & Design, 2010, 31, 620-623.	5.1	13
92	Comparative investigation on RE(La,Ce)AlO3(100)/ \hat{l}^3 -Fe(100) interfaces: A first-principles calculation. Applied Surface Science, 2016, 384, 207-216.	6.1	13
93	Investigation of microstructural evolution and electrical properties for Ni-Sn transient liquid-phase sintering bonding. Electronic Materials Letters, 2017, 13, 489-496.	2.2	13
94	A novel Zn-Al-Si corrosion resistant filler metal for Cu/Al brazing. Materials Letters, 2017, 206, 201-204.	2.6	13
95	Microstructural Evolution of Ni-Sn Transient Liquid Phase Sintering Bond during High-Temperature Aging. Journal of Electronic Materials, 2018, 47, 4642-4652.	2.2	13
96	Feasibility study of different filler metals on MIG-TIG double-sided arc brazing of titanium alloy-stainless steel. Journal of Manufacturing Processes, 2019, 47, 183-191.	5.9	13
97	Effect of Si addition on corrosion behaviors of Cu/Al dissimilar joint brazed with novel Zn-Al-xSi filler metals. Journal of Materials Research and Technology, 2019, 8, 5171-5179.	5.8	13
98	Interfacial microstructures and mechanical property of Ni/Al dissimilar butt joint made by laser welding. Journal of Manufacturing Processes, 2020, 50, 17-23.	5.9	13
99	Structural, mechanical, thermo-physical and electronic properties of η′-(CuNi)6Sn5 intermetallic compounds: First-principle calculations. Journal of Molecular Structure, 2016, 1112, 53-62.	3.6	12
100	A novel process with the characteristics of low-temperature bonding and high-temperature resisting for joining Cf/SiC composite to GH3044 alloy. Journal of the European Ceramic Society, 2019, 39, 5468-5472.	5.7	12
101	Microstructure, properties, and formation mechanisms of tungsten/steel hot isostatic pressing diffusion bonding joint utilizing a Ni-Si-B interlayer. Journal of Materials Processing Technology, 2022, 299, 117303.	6.3	12
102	In-situ synthesis and microstructure of TiC–Fe36Ni composite coatings by reactive detonation-gun spraying. Materials Letters, 2008, 62, 2009-2012.	2.6	11
103	Joining of Cf/SiC composite and 304 stainless steel assisted by surface honeycomb modification. Journal of the European Ceramic Society, 2021, 41, 6824-6833.	5.7	11
104	Reaction-composite diffusion brazing of C-SiC composite and Ni-based superalloy using mixed (Cu-Ti)+C powder as an interlayer. Journal of Materials Processing Technology, 2022, 300, 117419.	6.3	11
105	Two-stage superelasticity of a Ce-added laser-welded TiNi alloy. Materials Letters, 2008, 62, 3539-3541.	2.6	10
106	Growth Behavior of Intermetallic Compounds at SnAgCu/Ni and Cu Interfaces. Journal of Materials Engineering and Performance, 2010, 19, 129-134.	2.5	10
107	Joining of Cf/SiC composite and stainless steel via Ag+Ti filler in-situ alloying. Journal of Materials Processing Technology, 2019, 274, 116295.	6.3	10
108	First-principles calculations on adsorption-diffusion behavior of Boron atom with tungsten surface. Computational Materials Science, 2020, 183, 109908.	3.0	10

#	Article	IF	CITATIONS
109	Effect of Zn Al filler metals on the characteristics of the joint made by the high-frequency induction brazing of 304 stainless steel and 6A02 aluminum. Journal of Manufacturing Processes, 2021, 68, 961-972.	5.9	10
110	Effect of Si content on the microstructure and properties of Ti–Si–C composite coatings prepared by reactive plasma spraying. Ceramics International, 2021, 47, 24438-24452.	4.8	10
111	Microstructures and Mechanical Properties of Laser Welding Joint of a CLAM Steel with Revised Chemical Compositions. Journal of Materials Engineering and Performance, 2016, 25, 1848-1855.	2.5	9
112	A study of Ni 3 Sn 4 growth dynamics in Ni-Sn TLPS bonding process by differential scanning calorimetry. Thermochimica Acta, 2018, 663, 53-57.	2.7	9
113	Hot isostatic diffusion bonding tungsten alloy and high-strength steel Part I: Design and preparation of Ni-Si-B interlayer by magnetron sputtering. Journal of Manufacturing Processes, 2018, 35, 360-367.	5.9	9
114	Low-Temperature High-Frequency Induction Brazing of 5052 Aluminum Alloy to Stainless Steel with Sn-Zn Solder. Jom, 2019, 71, 1785-1792.	1.9	9
115	Influence of interfacial configuration on bonding strength and wettability between CuNiTi active filler metal and AlN ceramic. Ceramics International, 2020, 46, 25705-25718.	4.8	9
116	Microstructural evolution and performance of high-tin-content Cu40Sn60 (wt. %) core/shell powder TLPS bonding joints. Journal of Manufacturing Processes, 2022, 75, 853-862.	5.9	9
117	An ultra-hard and thick composite coating metallurgically bonded to Ti–6Al–4V. Surface and Coatings Technology, 2015, 278, 157-162.	4.8	8
118	First-principles investigation on the interaction of Boron atom with Nickel part I: From surface adsorption to bulk diffusion. Journal of Alloys and Compounds, 2016, 663, 116-122.	5.5	8
119	Microstructure evolution and formation mechanism of graded cemented carbide with cubic-carbide-free layer prepared with TiN or Ti(C,N) free powder mixture. International Journal of Refractory Metals and Hard Materials, 2017, 66, 198-203.	3.8	8
120	Laser beam joining of Al/steel dissimilar metals with Sn-Zn filler wire in overlap configuration. Journal of Manufacturing Processes, 2020, 60, 481-493.	5.9	8
121	Behavior and mechanism for Boron atom diffusing across tungsten grain boundary in the preparation of WB coating: A first-principles calculation. Applied Surface Science, 2021, 543, 148778.	6.1	8
122	Microstructures and mechanical property of 5052 aluminum alloy/Q235 steel butt joint achieved by laser beam joining with Sn-Zn filler wire. Optics and Laser Technology, 2021, 139, 106996.	4.6	8
123	Interfacial characteristics and mechanical properties of aluminum / steel butt joints fabricated by a newly developed high-frequency electric cooperated arc welding-brazing process. Journal of Materials Processing Technology, 2021, 298, 117317.	6.3	8
124	TLP bonding of SiCp/2618Al composites using mixed Al–Ag–Cu system powders as interlayers. Journal of Materials Science, 2007, 42, 9746-9749.	3.7	7
125	Expanded Lever Rule for Phase Volume Fraction Calculation of High-Strength Low-Alloy Steel in Thermal Simulation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2795-2803.	2.2	7
126	Joining of high thermal-expansion mismatched C-SiC composite and stainless steel by an Ag + Ti + Mo mixed powder filler. Materials Letters, 2019, 256, 126632.	2.6	7

#	Article	IF	Citations
127	Growth Kinetics of Ni3Sn4 in the Solid–Liquid Interfacial Reaction. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3038-3043.	2.2	7
128	Austenite Grain Size Prediction in the Coarse-Grained Heat-Affected Zone of the Developed Cu-Free High-Strength Low-Alloy Hull Structure Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 1665-1676.	2.2	7
129	Influence of Ni/Zn double coating on the steel on penetration welding-brazing by CMT arc-laser hybrid heat source. Optics and Laser Technology, 2021, 134, 106602.	4.6	7
130	Comparative study of laser swelding-brazing of aluminum alloy to galvanized steel butted joints using five different filler wires. Optics and Laser Technology, 2022, 147, 107618.	4.6	7
131	Interfacial Behavior and Its Effect on Mechanical Properties of Cf/SiC Composite/TiAl6V4 Joint Brazed with TiZrCuNi. Journal of Materials Engineering and Performance, 2017, 26, 1114-1121.	2.5	6
132	Transient Liquid-Phase Sintering Bonding Based on Cu40Sn60 (wt.%) Core/Shell Particles for High-Temperature Power Device Packaging. Journal of Electronic Materials, 2021, 50, 7283-7292.	2.2	6
133	Influence of Cu/W interfacial structure on the resistance against harmful helium atoms: A mechanism analysis. Journal of Alloys and Compounds, 2022, 903, 163817.	5.5	6
134	A dislocation model of shear fatigue damage and life prediction of SMT solder joints under thermal cycling. IEEE Transactions on Components, Hybrids and Manufacturing Technology, 1992, 15, 553-558.	0.4	5
135	First-principles investigation on the interaction of Boron atom with nickel part II: Absorption and diffusion at grain boundary. Journal of Alloys and Compounds, 2017, 708, 1089-1095.	5.5	5
136	Mechanical activation of pre-alloyed NiTi2 and elemental Ni for the synthesis of NiTi alloys. Journal of Materials Science, 2018, 53, 13432-13441.	3.7	5
137	Join Al–steel dissimilar metal by novel high frequency electric cooperated arc welding. Science and Technology of Welding and Joining, 2019, 24, 721-723.	3.1	5
138	A novel high efficiency low heat input welding method: High frequency electric cooperated arc welding. Materials Letters, 2019, 252, 142-145.	2.6	5
139	Investigation on viscosity, surface tension and non-reactive wettability of melting Ag-Cu-Xwt%Ti active filler metals. Journal of Alloys and Compounds, 2019, 772, 438-446.	5.5	5
140	Influence of applied electric field on atom diffusion behavior and mechanism for W/NiFe interface in diffusion bonding of Steel/NiFe interlayer/W by spark plasma sintering. Applied Surface Science, 2021, 541, 148516.	6.1	5
141	Mechanisms of an innovative hybrid arc welding process in enhancing joint penetration and weld property control through resistive and induction heat. Journal of Manufacturing Processes, 2021, 72, 500-514.	5.9	5
142	Influence of Sr additions on microstructure and properties of Al–Si–Ge–Zn filler metal for brazing 6061 aluminum alloy. Journal of Materials Research, 2017, 32, 822-830.	2.6	4
143	Study on butt joining 5052 aluminum alloy/Q235 mild steel by MIG-TIG double-sided arc welding-brazing process. Welding in the World, Le Soudage Dans Le Monde, 2018, 62, 145-154.	2.5	4
144	Corrosion behaviors in the brazed seam of Al/Cu dissimilar joints brazed by Zn-Al alloys. Welding in the World, Le Soudage Dans Le Monde, 2020, 64, 1023-1031.	2.5	4

#	Article	IF	Citations
145	In situ synthesis of TiC/Ti coatings by reactive plasma spraying. Materials Science and Technology, 2020, 36, 511-515.	1.6	4
146	Joining of Cf/SiC and stainless steel with (Cu–Ti)+C composite filler to obtain a stress-relieved and high-temperature resistant joint. Journal of Materials Research and Technology, 2021, 12, 2026-2041.	5.8	4
147	High temperature resistant Ni-Sn transient liquid phase sintering bonding for new generation semiconductor power electronic devices. , 2015 , , .		3
148	New bainite kinetics of high strength low alloy steel in fast cooling process. Journal of Iron and Steel Research International, 2017, 24, 229-233.	2.8	3
149	Method for Assessing Grain Boundary Density in High-Strength, High-Toughness Ferritic Weld Metal. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 198-207.	2.2	3
150	Preparation of Ni–Si–B nano-crystalline film and mechanism analysis using first-principle calculations. Journal of Alloys and Compounds, 2020, 828, 154407.	5.5	3
151	Interfacial microstructure and strengthening mechanism of W/steel diffusion bonding joint using a porous NiFeWss interlayer prepared by in-situ reduction. Materials Letters, 2022, 310, 131501.	2.6	3
152	Study on microstructure evolution and reaction mechanism of in-flight Ti–Si–C agglomerates during reactive plasma spraying using in situ water quenching. Ceramics International, 2022, 48, 18866-18875.	4.8	3
153	Structure and elastic property of nanosized complex oxide particles in ferritic/martensitic alloy: An electron energy-loss spectroscopy study. Journal of Nuclear Materials, 2011, 416, 331-334.	2.7	2
154	Evaluation on Dorsey Method in Surface Tension Measurement of Solder Liquids Containing Surfactants. International Journal of Thermophysics, 2018, 39, 1.	2.1	2
155	Influence of interfacial configuration on superhardness effect in TiN (111)/NbN (111) nano-multilayer film: A first-principles calculation. Materials Today Communications, 2020, 24, 101238.	1.9	2
156	Mechanical properties and oxidation behavior of SiC _f /Ti ₃ SiC ₂ composites prepared by hot isostatic pressing. International Journal of Applied Ceramic Technology, 2022, 19, 545-556.	2.1	2
157	Microstructure and Intermetallic Growth at the Sn-Ag-Cu/Ni Interface after Thermal-shearing Cycling.		1
158	Growth Behavior of IMCs and Fracture Forming Mechanism at Sn-Ag-Cu/Cu Interfaces under Thermal-Shearing Cycling Condition. , 2006, , .		1
159	Process optimization for novel tungsten/metal gas suspended arc welding depositing iron base self-fluxing alloy coatings. International Journal of Advanced Manufacturing Technology, 2017, 89, 2481-2489.	3.0	1
160	THERMAL SHOCK RESISTANCE OF La2(Zr0.7Ce0.3)2O7 THERMAL BARRIER COATING PREPARED BY ATMOSPHERIC PLASMA SPRAYING. Jinshu Xuebao/Acta Metallurgica Sinica, 2012, 48, 965.	0.3	1
161	Enhancing Aluminum Alloy Brazing Joint Strength by Using Zn-Al-Cu Filler Metal. Journal of Materials Engineering and Performance, 2022, 31, 2410-2418.	2.5	1
162	Study on the Kinetics of Ni3Sn4 Growth and Isothermal Solidification in Ni-Sn TLPS Bonding Process. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 1704-1716.	2.2	1

#	Article	IF	CITATIONS
163	Effect of Thermal-Shearing Induced Microstructural Coarsening on SnAgCu Microelectronic Solder. , 2007, , .		0
164	$\label{lem:microstructural} \mbox{ Transformation on SnAgCu/Cu Interface Induced by Thermal-shearing Cycling.}\ , 2008, \ , .$		0
165	Microstructure and tensile properties of Ti-6Al-4V alloys manufactured by selective laser melting with optimized processing parameters. IOP Conference Series: Materials Science and Engineering, 2017, 265, 012015.	0.6	0
166	An investigation on the precipitated phases and mechanical properties of cerium modified 2024 aluminum alloy. Materialwissenschaft Und Werkstofftechnik, 2020, 51, 1267-1273.	0.9	0