Seong-Yong Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5517101/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Selective and Sensitive Detection of Breath Isoprene by Tailored Gas Reforming: A Synergistic Combination of Macroporous WO ₃ Spheres and Au Catalysts. ACS Applied Materials & Interfaces, 2022, 14, 11587-11596.	8.0	9
2	Designing oxide chemiresistors for detecting volatile aromatic compounds: recent progresses and future perspectives. Chemical Communications, 2022, 58, 5439-5454.	4.1	26
3	A General Solution to Mitigate Water Poisoning of Oxide Chemiresistors: Bilayer Sensors with Tb ₄ O ₇ Overlayer. Advanced Functional Materials, 2021, 31, 2007895.	14.9	33
4	Highly Selective Detection of Benzene and Discrimination of Volatile Aromatic Compounds Using Oxide Chemiresistors with Tunable Rhâ€īiO ₂ Catalytic Overlayers. Advanced Science, 2021, 8, 2004078.	11.2	56
5	Exclusive and ultrasensitive detection of formaldehyde at room temperature using a flexible and monolithic chemiresistive sensor. Nature Communications, 2021, 12, 4955.	12.8	84
6	Selective dual detection of hydrogen sulfide and methyl mercaptan using CuO/CuFe2O4 nanopattern chemiresistors. Sensors and Actuators B: Chemical, 2021, 348, 130665.	7.8	20
7	Heterostructure between WO3 and metal organic framework-derived BiVO4 nanoleaves for enhanced photoelectrochemical performances. Chemical Engineering Journal, 2021, 425, 131496.	12.7	27
8	Rational Design of Semiconductorâ€Based Chemiresistors and their Libraries for Nextâ€Generation Artificial Olfaction. Advanced Materials, 2020, 32, e2002075.	21.0	215
9	General Strategy for Designing Highly Selective Gas-Sensing Nanoreactors: Morphological Control of SnO ₂ Hollow Spheres and Configurational Tuning of Au Catalysts. ACS Applied Materials & Interfaces, 2020, 12, 51607-51615.	8.0	42
10	A New Strategy for Detecting Plant Hormone Ethylene Using Oxide Semiconductor Chemiresistors: Exceptional Gas Selectivity and Response Tailored by Nanoscale Cr ₂ O ₃ Catalytic Overlayer. Advanced Science, 2020, 7, 1903093.	11.2	49
11	Methylbenzene sensors using Ti-doped NiO multiroom spheres: Versatile tunability on selectivity, response, sensitivity, and detection limit. Sensors and Actuators B: Chemical, 2020, 308, 127730.	7.8	28
12	Metal Oxide Gas Sensors with Au Nanocluster Catalytic Overlayer: Toward Tuning Gas Selectivity and Response Using a Novel Bilayer Sensor Design. ACS Applied Materials & Interfaces, 2019, 11, 32169-32177.	8.0	83
13	Humidity-Independent Gas Sensors Using Pr-Doped In ₂ O ₃ Macroporous Spheres: Role of Cyclic Pr ³⁺ /Pr ⁴⁺ Redox Reactions in Suppression of Water-Poisoning Effect. ACS Applied Materials & Interfaces, 2019, 11, 25322-25329.	8.0	113
14	Dual-mode gas sensor for ultrasensitive and highly selective detection of xylene and toluene using Nb-doped NiO hollow spheres. Sensors and Actuators B: Chemical, 2019, 301, 127140.	7.8	84
15	Highly Sensitive and Selective PbTiO ₃ Gas Sensors with Negligible Humidity Interference in Ambient Atmosphere. ACS Applied Materials & Interfaces, 2019, 11, 5240-5246.	8.0	40
16	Humidity-Independent Oxide Semiconductor Chemiresistors Using Terbium-Doped SnO ₂ Yolk–Shell Spheres for Real-Time Breath Analysis. ACS Applied Materials & Interfaces, 2018, 10, 18886-18894.	8.0	119
17	Ultra-selective detection of sub-ppm-level benzene using Pd–SnO ₂ yolk–shell micro-reactors with a catalytic Co ₃ O ₄ overlayer for monitoring air quality. Journal of Materials Chemistry A, 2017, 5, 1446-1454.	10.3	111
18	Gas Selectivity Control in Co ₃ O ₄ Sensor via Concurrent Tuning of Gas Reforming and Gas Filtering using Nanoscale Hetero-Overlayer of Catalytic Oxides. ACS Applied Materials & Interfaces, 2017, 9, 41397-41404.	8.0	39

#	Article	IF	CITATIONS
19	Monolayer Co ₃ O ₄ Inverse Opals as Multifunctional Sensors for Volatile Organic Compounds. Chemistry - A European Journal, 2016, 22, 7102-7107.	3.3	42
20	Co ₃ O ₄ –SnO ₂ Hollow Heteronanostructures: Facile Control of Gas Selectivity by Compositional Tuning of Sensing Materials via Galvanic Replacement. ACS Applied Materials & Interfaces, 2016, 8, 7877-7883.	8.0	148