Fangyu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5517029/publications.pdf

Version: 2024-02-01

18	2,161	16	18
papers	citations	h-index	g-index
19	19	19	2652 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Smart Materials for Microrobots. Chemical Reviews, 2022, 122, 5365-5403.	23.0	201
2	Biomembraneâ€Functionalized Micromotors: Biocompatible Active Devices for Diverse Biomedical Applications. Advanced Materials, 2022, 34, e2107177.	11.1	41
3	An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers. Nature Biomedical Engineering, 2021, 5, 737-748.	11.6	309
4	ACE2 Receptor-Modified Algae-Based Microrobot for Removal of SARS-CoV-2 in Wastewater. Journal of the American Chemical Society, 2021, 143, 12194-12201.	6.6	42
5	A passive perspiration biofuel cell: High energy return on investment. Joule, 2021, 5, 1888-1904.	11.7	89
6	Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Science Robotics, 2020, 5, .	9.9	236
7	A Nanomotor-Based Active Delivery System for Intracellular Oxygen Transport. ACS Nano, 2019, 13, 11996-12005.	7.3	81
8	Micromotors for Active Delivery of Minerals toward the Treatment of Iron Deficiency Anemia. Nano Letters, 2019, 19, 7816-7826.	4.5	54
9	A Macrophage–Magnesium Hybrid Biomotor: Fabrication and Characterization. Advanced Materials, 2019, 31, e1901828.	11.1	76
10	Structureâ€Dependent Optical Modulation of Propulsion and Collective Behavior of Acoustic/Lightâ€Driven Hybrid Microbowls. Advanced Functional Materials, 2019, 29, 1809003.	7.8	79
11	Micromotor Pills as a Dynamic Oral Delivery Platform. ACS Nano, 2018, 12, 8397-8405.	7.3	104
12	Chemical/Lightâ€Powered Hybrid Micromotors with "Onâ€theâ€Fly―Optical Brakes. Angewandte Chemie - International Edition, 2018, 57, 8110-8114.	7.2	67
13	Chemical/Lightâ€Powered Hybrid Micromotors with "Onâ€theâ€Fly―Optical Brakes. Angewandte Chemie, 2018, 130, 8242-8246.	1.6	34
14	Infrared Detection Based on Localized Modification of <i>Morpho</i> Butterfly Wings. Advanced Materials, 2015, 27, 1077-1082.	11.1	90
15	Bioinspired Engineering of Thermal Materials. Advanced Materials, 2015, 27, 428-463.	11.1	225
16	Evaporation: Bioâ€Inspired Evaporation Through Plasmonic Film of Nanoparticles at the Air–Water Interface (Small 16/2014). Small, 2014, 10, 3233-3233.	5. 2	14
17	Bioâ€Inspired Evaporation Through Plasmonic Film of Nanoparticles at the Air–Water Interface. Small, 2014, 10, 3234-3239.	5.2	418
18	An ancient method-inspired route for fast fabrication of †PbS bird feathers'. MRS Communications, 2013, 3, 61-65.	0.8	1