Zhongfu An

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5516900/publications.pdf

Version: 2024-02-01

130	11,467	56 h-index	104
papers	citations		g-index
135	135	135	6096
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Roomâ€temperature phosphorescence materials from crystalline to amorphous state. SmartMat, 2023, 4,	6.4	18
2	Highly Efficient Blue Phosphorescence from Pillar‣ayer MOFs by Ligand Functionalization. Advanced Materials, 2022, 34, e2107612.	11.1	71
3	Endowing matrix-free carbon dots with color-tunable ultralong phosphorescence by self-doping. Chemical Science, 2022, 13, 4406-4412.	3.7	51
4	Activating room-temperature phosphorescence of 1,8-naphthalimide by doping into aromatic dicarboxylic acids. Chemical Communications, 2022, 58, 3641-3644.	2.2	19
5	Atomic-resolved hierarchical structure of elastic π-conjugated molecular crystal for flexible organic photonics. CheM, 2022, 8, 1427-1441.	5.8	19
6	Combining π-conjugated groups by flexible alkyl chains for ultralong organic phosphorescence by photo-activation. Journal of Luminescence, 2022, 247, 118894.	1.5	1
7	Modulating the triplet chromophore environment to prolong the emission lifetime of ultralong organic phosphorescence. Journal of Materials Chemistry C, 2022, 10, 13747-13752.	2.7	5
8	A π-orbital model to study substituent effects in organic room-temperature phosphorescent materials. Journal of Materials Chemistry C, 2022, 10, 9319-9325.	2.7	1
9	Halogen-doped phosphorescent carbon dots for grayscale patterning. Light: Science and Applications, 2022, 11, .	7.7	27
10	Dynamic room-temperature phosphorescence by reversible transformation of photo-induced free radicals. Science China Chemistry, 2022, 65, 1538-1543.	4.2	17
11	Organic Hollow Microstructures with Room Temperature Phosphorescence. Advanced Optical Materials, 2022, 10, .	3.6	3
12	Organic phosphorescent scintillation from copolymers by X-ray irradiation. Nature Communications, 2022, 13, .	5.8	55
13	A purely organic D-Ï€-A-Ï€-D emitter with thermally activated delayed fluorescence and room temperature phosphorescence for near-white OLED. Chinese Chemical Letters, 2021, 32, 1367-1371.	4.8	23
14	Molecular Engineering through Control of Structural Deformation for Highly Efficient Ultralong Organic Phosphorescence. Angewandte Chemie, 2021, 133, 2086-2091.	1.6	17
15	Molecular Engineering through Control of Structural Deformation for Highly Efficient Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2021, 60, 2058-2063.	7.2	75
16	Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nature Photonics, 2021, 15, 187-192.	15.6	237
17	Tunable microstructures of ultralong organic phosphorescence materials. Chemical Communications, 2021, 57, 7276-7279.	2.2	10
18	A Single-Component Supramolecular Organic Framework with Efficient Ultralong Phosphorescence. CCS Chemistry, 2021, 3, 466-472.	4.6	10

#	Article	IF	CITATIONS
19	Recent Advances of Cocrystals with Room Temperature Phosphorescence. Advanced Optical Materials, 2021, 9, 2002197.	3.6	115
20	Microscopic Afterglow Bioimaging by Ultralong Organic Phosphorescent Nanoparticles in Living Cells and Zebrafish. Analytical Chemistry, 2021, 93, 6516-6522.	3.2	24
21	A Permanent Porous Hydrogen-Bonded Framework with Room-Temperature Phosphorescence. Crystal Growth and Design, 2021, 21, 3420-3427.	1.4	13
22	X-ray-charged bright persistent luminescence in NaYF4:Ln3+@NaYF4 nanoparticles for multidimensional optical information storage. Light: Science and Applications, 2021, 10, 132.	7.7	154
23	Wide-range lifetime-tunable and responsive ultralong organic phosphorescent multi-host/guest system. Nature Communications, 2021, 12, 3522.	5.8	161
24	Elastic organic crystals with ultralong phosphorescence for flexible anti-counterfeiting. Npj Flexible Electronics, 2021, 5, .	5.1	29
25	Confinement fluorescence effect (CFE): Lighting up life by enhancing the absorbed photon energy utilization efficiency of fluorophores. Coordination Chemistry Reviews, 2021, 440, 213979.	9.5	18
26	Confining isolated chromophores for highly efficient blue phosphorescence. Nature Materials, 2021, 20, 1539-1544.	13.3	257
27	Theoretical Insight Into the Ultralong Room-Temperature Phosphorescence of Nonplanar Aromatic Hydrocarbon. Frontiers in Chemistry, 2021, 9, 740018.	1.8	6
28	Influence of Isomerism on Radioluminescence of Purely Organic Phosphorescence Scintillators. Angewandte Chemie, 2021, 133, 27401-27406.	1.6	9
29	Molecular conformation dependence of phosphorescence lifetime in organic aggregates. Dyes and Pigments, 2021, 193, 109520.	2.0	11
30	Ultralong Organic Phosphorescent Foams with High Mechanical Strength. Journal of the American Chemical Society, 2021, 143, 16256-16263.	6.6	84
31	Influence of Isomerism on Radioluminescence of Purely Organic Phosphorescence Scintillators. Angewandte Chemie - International Edition, 2021, 60, 27195-27200.	7.2	35
32	Photo-induced ultralong phosphorescence of carbon dots for thermally sensitive dynamic patterning. Chemical Science, 2021, 12, 8199-8206.	3.7	37
33	Circularly Polarized Organic Room Temperature Phosphorescence from Amorphous Copolymers. Journal of the American Chemical Society, 2021, 143, 18527-18535.	6.6	132
34	Highly Efficient Heavy Atom Free Room Temperature Phosphorescence by Host-Guest Doping. Frontiers in Chemistry, 2021, 9, 781294.	1.8	3
35	D–A–D-type bipolar host materials with room temperature phosphorescence for high-efficiency green phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 1871-1878.	2.7	18
36	Biocompatible metal-free organic phosphorescent nanoparticles for efficiently multidrug-resistant bacteria eradication. Science China Materials, 2020, 63, 316-324.	3.5	20

#	Article	IF	Citations
37	Manipulating the Ultralong Organic Phosphorescence of Small Molecular Crystals. Chemistry - A European Journal, 2020, 26, 4437-4448.	1.7	92
38	Tunable ultralong organic phosphorescence modulated by main-group elements with different Lewis acidity and basicity. Journal of Materials Chemistry C, 2020, 8, 14740-14747.	2.7	13
39	Exploiting radical-pair intersystem crossing for maximizing singlet oxygen quantum yields in pure organic fluorescent photosensitizers. Chemical Science, 2020, 11, 10921-10927.	3.7	17
40	Supramolecular organic frameworks with ultralong phosphorescence via breaking π-Conjugated structures. Giant, 2020, 1, 100007.	2.5	12
41	Color-tunable ultralong organic phosphorescence materials for visual UV-light detection. Science China Chemistry, 2020, 63, 1443-1448.	4.2	52
42	Ultralong Organic Phosphorescent Nanocrystals with Long-Lived Triplet Excited States for Afterglow Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2020, 12, 18385-18394.	4.0	57
43	Organic Room-Temperature Phosphorescent Materials: From Static to Dynamic. Journal of Physical Chemistry Letters, 2020, 11, 6191-6200.	2.1	71
44	Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer. Nature Communications, 2020, 11, 944.	5.8	278
45	Hydrophilic Ultralong Organic Nanophosphors. Small, 2020, 16, e1906733.	5.2	30
46	Organic Room Temperature Phosphorescence Materials for Biomedical Applications. Chemistry - an Asian Journal, 2020, 15, 947-957.	1.7	101
47	Frontispiece: Manipulating the Ultralong Organic Phosphorescence of Small Molecular Crystals. Chemistry - A European Journal, 2020, 26, .	1.7	0
48	Long Persistent Luminescence Enabled by Dissociation of Triplet Intermediate States in an Organic Guest/Host System. Journal of Physical Chemistry Letters, 2020, 11, 3582-3588.	2.1	12
49	Deep-red fluorescence from isolated dimers: a highly bright excimer and imaging <i>in vivo</i> . Chemical Science, 2020, 11, 6020-6025.	3.7	44
50	All-in-One Deposition to Synergistically Manipulate Perovskite Growth for High-Performance Solar Cell. Research, 2020, 2020, 2763409.	2.8	30
51	Polymorphism-Dependent Dynamic Ultralong Organic Phosphorescence. Research, 2020, 2020, 8183450.	2.8	33
52	Multicolor Ultralong Organic Phosphorescence through Alkyl Engineering for 4D Coding Applications. Chemistry of Materials, 2019, 31, 5584-5591.	3.2	122
53	Manipulating the Stacking of Triplet Chromophores in the Crystal Form for Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 14140-14145.	7.2	98
54	Manipulating the Stacking of Triplet Chromophores in the Crystal Form for Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, 14278-14283.	1.6	27

#	Article	IF	CITATIONS
55	Achieving Dual Persistent Roomâ€Temperature Phosphorescence from Polycyclic Luminophores via Interâ€Intramolecular Charge Transfer. Advanced Optical Materials, 2019, 7, 1900511.	3.6	60
56	Hydrogen Bonding-Induced Morphology Dependence of Long-Lived Organic Room-Temperature Phosphorescence: A Computational Study. Journal of Physical Chemistry Letters, 2019, 10, 6948-6954.	2.1	76
57	Controllable Multiemission with Ultralong Organic Phosphorescence in Crystal by Isomerization. Advanced Optical Materials, 2019, 7, 1901076.	3.6	24
58	Green-synthesized, low-cost tetracyanodiazafluorene (TCAF) as electron injection material for organic light-emitting diodes. Chinese Chemical Letters, 2019, 30, 1969-1973.	4.8	8
59	Amorphous Ionic Polymers with Color‶unable Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 18776-18782.	7.2	129
60	Amorphous Ionic Polymers with Color‶unable Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, 18952-18958.	1.6	36
61	Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking. Nature Communications, 2019, 10, 4247.	5.8	199
62	Controllable co-assembly of organic micro/nano heterostructures from fluorescent and phosphorescent molecules for dual anti-counterfeiting. Materials Horizons, 2019, 6, 984-989.	6.4	68
63	Highly Efficient Ultralong Organic Phosphorescence through Intramolecular-Space Heavy-Atom Effect. Journal of Physical Chemistry Letters, 2019, 10, 595-600.	2.1	130
64	Ultraviolet afterglow. Nature Photonics, 2019, 13, 74-75.	15.6	25
64	Ultraviolet afterglow. Nature Photonics, 2019, 13, 74-75. Colour-tunable ultralong organic phosphorescence upon temperature stimulus. RSC Advances, 2019, 9, 19075-19078.	15.6	25
	Colour-tunable ultralong organic phosphorescence upon temperature stimulus. RSC Advances, 2019,		
65	Colour-tunable ultralong organic phosphorescence upon temperature stimulus. RSC Advances, 2019, 9, 19075-19078.	1.7	9
65	Colour-tunable ultralong organic phosphorescence upon temperature stimulus. RSC Advances, 2019, 9, 19075-19078. Boronâ€Clusterâ€Enhanced Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, 9227-9231. Boronâ€Clusterâ€Enhanced Ultralong Organic Phosphorescence. Angewandte Chemie - International	1.7	9 21
65 66 67	Colour-tunable ultralong organic phosphorescence upon temperature stimulus. RSC Advances, 2019, 9, 19075-19078. Boronâ€Clusterâ€Enhanced Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, 9227-9231. Boronâ€Clusterâ€Enhanced Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 9129-9133. A Highly Efficient Red Metal-free Organic Phosphor for Time-Resolved Luminescence Imaging and	1.7 1.6 7.2	9 21 86
65 66 67 68	Colour-tunable ultralong organic phosphorescence upon temperature stimulus. RSC Advances, 2019, 9, 19075-19078. Boron lusterâ€Enhanced Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, 9227-9231. Boron lusterâ€Enhanced Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 9129-9133. A Highly Efficient Red Metal-free Organic Phosphor for Time-Resolved Luminescence Imaging and Photodynamic Therapy. ACS Applied Materials & Colour State of the Colou	1.7 1.6 7.2 4.0	9 21 86 74
65 66 67 68	Colour-tunable ultralong organic phosphorescence upon temperature stimulus. RSC Advances, 2019, 9, 19075-19078. Boronâ€Clusterâ€Enhanced Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, 9227-9231. Boronâ€Clusterâ€Enhanced Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 9129-9133. A Highly Efficient Red Metal-free Organic Phosphor for Time-Resolved Luminescence Imaging and Photodynamic Therapy. ACS Applied Materials & Dependent Fluorescence of an ESIPT Triazole Derivative for Amine Sensing and Antiâ€Counterfeiting Applications. Angewandte Chemie - International Edition, 2019, 58, 8773-8778.	1.7 1.6 7.2 4.0	9 21 86 74

#	Article	IF	Citations
73	Roomâ€Temperature Phosphorescence in Metalâ€Free Organic Materials. Annalen Der Physik, 2019, 531, 1800482.	0.9	79
74	Utilizing d–pπ Bonds for Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 6645-6649.	7.2	154
75	Utilizing d–pπ Bonds for Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, 6717-6721.	1.6	107
76	Prolonging Ultralong Organic Phosphorescence Lifetime to 2.5 s through Confining Rotation in Molecular Rotor. Advanced Optical Materials, 2019, 7, 1800820.	3.6	53
77	Room-Temperature Phosphorescence from Metal-Free Organic Materials in Solution: Origin and Molecular Design. Journal of Physical Chemistry Letters, 2019, 10, 1037-1042.	2.1	34
78	Frontispiece: Amorphous Ionic Polymers with Color‶unable Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0
79	Frontispiz: Amorphous Ionic Polymers with Color‶unable Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, .	1.6	0
80	Subtle structure tailoring of metal-free triazine luminogens for highly efficient ultralong organic phosphorescence. Chinese Chemical Letters, 2019, 30, 1935-1938.	4.8	9
81	Efficient and Long-Lived Room-Temperature Organic Phosphorescence: Theoretical Descriptors for Molecular Designs. Journal of the American Chemical Society, 2019, 141, 1010-1015.	6.6	389
82	Emission Editing in Eu/Tb binary complexes based on Au@SiO2 nanorods. Optics Express, 2019, 27, 27726.	1.7	8
83	Organic Phosphorescence: Enhancing Ultralong Organic Phosphorescence by Effective Ï€â€Type Halogen Bonding (Adv. Funct. Mater. 9/2018). Advanced Functional Materials, 2018, 28, 1870060.	7.8	2
84	Enhancing Ultralong Organic Phosphorescence by Effective Ï€â€Type Halogen Bonding. Advanced Functional Materials, 2018, 28, 1705045.	7.8	244
85	Hydrogenâ€Bonded Organic Aromatic Frameworks for Ultralong Phosphorescence by Intralayer π–π Interactions. Angewandte Chemie - International Edition, 2018, 57, 4005-4009.	7.2	207
86	An effective signal amplifying strategy for copper (II) sensing by using in situ fluorescent proteins as energy donor of FRET. Sensors and Actuators B: Chemical, 2018, 259, 633-641.	4.0	10
87	Ultralong Phosphorescence from Organic Ionic Crystals under Ambient Conditions. Angewandte Chemie, 2018, 130, 686-690.	1.6	33
88	AgCl/Ag3PO4: A stable Ag-Based nanocomposite photocatalyst with enhanced photocatalytic activity for the degradation of parabens. Journal of Colloid and Interface Science, 2018, 515, 10-17.	5.0	64
89	Twisted Molecular Structure on Tuning Ultralong Organic Phosphorescence. Journal of Physical Chemistry Letters, 2018, 9, 335-339.	2.1	72
90	Hydrogenâ€Bonded Organic Aromatic Frameworks for Ultralong Phosphorescence by Intralayer π–π Interactions. Angewandte Chemie, 2018, 130, 4069-4073.	1.6	61

#	Article	IF	Citations
91	Ultralong Phosphorescence from Organic Ionic Crystals under Ambient Conditions. Angewandte Chemie - International Edition, 2018, 57, 678-682.	7.2	176
92	Prolonging the lifetime of ultralong organic phosphorescence through dihydrogen bonding. Journal of Materials Chemistry C, 2018, 6, 226-233.	2.7	92
93	Recent Advances in Polymerâ€Based Metalâ€Free Roomâ€Temperature Phosphorescent Materials. Advanced Functional Materials, 2018, 28, 1802657.	7.8	357
94	Reversible Ultralong Organic Phosphorescence for Visual and Selective Chloroform Detection. ACS Applied Materials & Detection (2018), 10, 33730-33736.	4.0	69
95	Insight into chirality on molecular stacking for tunable ultralong organic phosphorescence. Journal of Materials Chemistry C, 2018, 6, 10179-10183.	2.7	18
96	Dynamic Ultralong Organic Phosphorescence by Photoactivation. Angewandte Chemie - International Edition, 2018, 57, 8425-8431.	7.2	241
97	Pure Organic Persistent Roomâ€Temperature Phosphorescence at both Crystalline and Amorphous States. ChemPhysChem, 2018, 19, 2389-2396.	1.0	41
98	Dynamic Ultralong Organic Phosphorescence by Photoactivation. Angewandte Chemie, 2018, 130, 8561-8567.	1.6	47
99	Simultaneously Enhancing Efficiency and Lifetime of Ultralong Organic Phosphorescence Materials by Molecular Self-Assembly. Journal of the American Chemical Society, 2018, 140, 10734-10739.	6.6	399
100	Chalcogen atom modulated persistent room-temperature phosphorescence through intramolecular electronic coupling. Chemical Communications, 2018, 54, 9226-9229.	2.2	76
101	Progress of Research on Organic/Organometallic Mechanoluminescent Materials. Acta Chimica Sinica, 2018, 76, 246.	0.5	24
102	Organic Nanoparticles: Ultralong Phosphorescence of Waterâ€Soluble Organic Nanoparticles for In Vivo Afterglow Imaging (Adv. Mater. 33/2017). Advanced Materials, 2017, 29, .	11.1	1
103	Visibleâ€Lightâ€Excited Ultralong Organic Phosphorescence by Manipulating Intermolecular Interactions. Advanced Materials, 2017, 29, 1701244.	11.1	320
104	Ultralong Phosphorescence of Waterâ€Soluble Organic Nanoparticles for In Vivo Afterglow Imaging. Advanced Materials, 2017, 29, 1606665.	11.1	419
105	Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water. Nature Communications, 2016, 7, 13059.	5.8	164
106	Remote Câ^'H Activation of Quinolines through Copper atalyzed Radical Cross oupling. Chemistry - an Asian Journal, 2016, 11, 882-892.	1.7	130
107	Enhancing Organic Phosphorescence by Manipulating Heavy-Atom Interaction. Crystal Growth and Design, 2016, 16, 808-813.	1.4	122
108	Multi-color Poly(Fluorenylene Ethynylene)s with On-Chain Phosphorescent Iridium(III) Complexes Through Energy Transfer. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 720-729.	1.9	3

#	Article	IF	Citations
109	Understanding the Control of Singlet-Triplet Splitting for Organic Exciton Manipulating: A Combined Theoretical and Experimental Approach. Scientific Reports, 2015, 5, 10923.	1.6	151
110	Electroluminescence from europium(III) complexes. Coordination Chemistry Reviews, 2015, 293-294, 228-249.	9.5	189
111	Stabilizing triplet excited states for ultralong organic phosphorescence. Nature Materials, 2015, 14, 685-690.	13.3	1,404
112	Cancer Treatment: Ultrasmall Phosphorescent Polymer Dots for Ratiometric Oxygen Sensing and Photodynamic Cancer Therapy (Adv. Funct. Mater. 30/2014). Advanced Functional Materials, 2014, 24, 4822-4822.	7.8	0
113	Ultrasmall Phosphorescent Polymer Dots for Ratiometric Oxygen Sensing and Photodynamic Cancer Therapy. Advanced Functional Materials, 2014, 24, 4823-4830.	7.8	197
114	Singleâ€Layer Transition Metal Dichalcogenide Nanosheetâ€Assisted Assembly of Aggregationâ€Induced Emission Molecules to Form Organic Nanosheets with Enhanced Fluorescence. Advanced Materials, 2014, 26, 1735-1739.	11.1	77
115	Relationships between main-chain chirality and photophysical properties in chiral conjugated polymers. Journal of Materials Chemistry C, 2014, 2, 7336-7347.	2.7	9
116	Hyper-Branched Phosphorescent Conjugated Polyelectrolytes for Time-Resolved Heparin Sensing. ACS Applied Materials & District Sensing Sens	4.0	46
117	Dynamically Adaptive Characteristics of Resonance Variation for Selectively Enhancing Electrical Performance of Organic Semiconductors. Angewandte Chemie - International Edition, 2013, 52, 10491-10495.	7.2	78
118	Modulation of singlet and triplet excited states through \ddot{l}_f spacers in ternary 1,3,5-triazines. RSC Advances, 2013, 3, 13782.	1.7	6
119	Photophysical properties of chirality: Experimental and theoretical studies of (R)- and (S)-binaphthol derivatives as a prototype case. Chemical Physics, 2013, 412, 34-40.	0.9	3
120	A Ratiometric Probe Composed of an Anionic Conjugated Polyelectrolyte and a Cationic Phosphorescent Iridium(⟨scp⟩ II⟨ scp⟩) Complex for Timeâ€⟨scp⟩R⟨ scp⟩esolved Detection of Hg(⟨scp⟩ I⟨ scp⟩) in Aqueous Media. Macromolecular Bioscience, 2013, 13, 1339-1346.	2.1	9
121	Exceptional Blueshifted and Enhanced Aggregationâ€Induced Emission of Conjugated Asymmetric Triazines and Their Applications in Superamplified Detection of Explosives. Chemistry - A European Journal, 2012, 18, 15655-15661.	1.7	60
122	Facile synthesis and optoelectronic properties of N,N-difluorenevinylaniline-based molecules. New Journal of Chemistry, 2012, 36, 1512.	1.4	5
123	Computational design and selection of optimal building blocks and linking topologies for construction of high-performance host materials. RSC Advances, 2012, 2, 7860.	1.7	30
124	Theoretical study of organic molecules containing N or S atoms as receptors for Hg(II) fluorescent sensors. Synthetic Metals, 2012, 162, 641-649.	2.1	22
125	Improved Energy Transfer through the Formation of the β Phase for Polyfluorenes Containing Phosphorescent Iridium(III) Complexes. Journal of Physical Chemistry C, 2011, 115, 11749-11757.	1.5	31
126	Conjugated Asymmetric Donor‧ubstituted 1,3,5â€Triazines: New Host Materials for Blue Phosphorescent Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2011, 17, 10871-10878.	1.7	75

#	Article	IF	CITATION
127	Titanium Oxide Nanotubes Prepared by Anodic Oxidation and Their Application in Solar Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2011, 27, 1017-1025.	2.2	5
128	Simple Conjugated Polymers with Onâ€Chain Phosphorescent Iridium(III) Complexes: Toward Ratiometric Chemodosimeters for Detecting Trace Amounts of Mercury(II). Chemistry - A European Journal, 2010, 16, 12158-12167.	1.7	86
129	Highly efficient and stable blueâ€lightâ€emitting binaphtholâ€fluorene copolymers: A joint experimental and theoretical study of the mainâ€chain chirality. Journal of Polymer Science Part A, 2010, 48, 3868-3879.	2.5	17
130	Tuning the Optoelectronic Properties of 4,4′- <i>N</i> , <i>N</i> ,ê²-Dicarbazole-biphenyl through Heteroatom Linkage: New Host Materials for Phosphorescent Organic Light-Emitting Diodes. Organic Letters, 2010, 12, 3438-3441.	2.4	71