
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5516900/publications.pdf Version: 2024-02-01

ΖΗΟΝΟΕΊΙ ΔΝ

#	Article	IF	CITATIONS
1	Stabilizing triplet excited states for ultralong organic phosphorescence. Nature Materials, 2015, 14, 685-690.	13.3	1,404
2	Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal. Nature Photonics, 2019, 13, 406-411.	15.6	579
3	Ultralong Phosphorescence of Waterâ€Soluble Organic Nanoparticles for In Vivo Afterglow Imaging. Advanced Materials, 2017, 29, 1606665.	11.1	419
4	Simultaneously Enhancing Efficiency and Lifetime of Ultralong Organic Phosphorescence Materials by Molecular Self-Assembly. Journal of the American Chemical Society, 2018, 140, 10734-10739.	6.6	399
5	Efficient and Long-Lived Room-Temperature Organic Phosphorescence: Theoretical Descriptors for Molecular Designs. Journal of the American Chemical Society, 2019, 141, 1010-1015.	6.6	389
6	Recent Advances in Polymerâ€Based Metalâ€Free Roomâ€Temperature Phosphorescent Materials. Advanced Functional Materials, 2018, 28, 1802657.	7.8	357
7	Visibleâ€Lightâ€Excited Ultralong Organic Phosphorescence by Manipulating Intermolecular Interactions. Advanced Materials, 2017, 29, 1701244.	11.1	320
8	Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer. Nature Communications, 2020, 11, 944.	5.8	278
9	Confining isolated chromophores for highly efficient blue phosphorescence. Nature Materials, 2021, 20, 1539-1544.	13.3	257
10	Enhancing Ultralong Organic Phosphorescence by Effective Ï€â€Type Halogen Bonding. Advanced Functional Materials, 2018, 28, 1705045.	7.8	244
11	Dynamic Ultralong Organic Phosphorescence by Photoactivation. Angewandte Chemie - International Edition, 2018, 57, 8425-8431.	7.2	241
12	Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nature Photonics, 2021, 15, 187-192.	15.6	237
13	Hydrogenâ€Bonded Organic Aromatic Frameworks for Ultralong Phosphorescence by Intralayer ï€â€"ï€ Interactions. Angewandte Chemie - International Edition, 2018, 57, 4005-4009.	7.2	207
14	Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking. Nature Communications, 2019, 10, 4247.	5.8	199
15	Ultrasmall Phosphorescent Polymer Dots for Ratiometric Oxygen Sensing and Photodynamic Cancer Therapy. Advanced Functional Materials, 2014, 24, 4823-4830.	7.8	197
16	Electroluminescence from europium(III) complexes. Coordination Chemistry Reviews, 2015, 293-294, 228-249.	9.5	189
17	Ultralong Phosphorescence from Organic Ionic Crystals under Ambient Conditions. Angewandte Chemie - International Edition, 2018, 57, 678-682.	7.2	176
18	Excitation Wavelength Dependent Fluorescence of an ESIPT Triazole Derivative for Amine Sensing and Anti ounterfeiting Applications. Angewandte Chemie - International Edition, 2019, 58, 8773-8778.	7.2	168

#	Article	IF	CITATIONS
19	Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water. Nature Communications, 2016, 7, 13059.	5.8	164
20	Wide-range lifetime-tunable and responsive ultralong organic phosphorescent multi-host/guest system. Nature Communications, 2021, 12, 3522.	5.8	161
21	Utilizing d–pπ Bonds for Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 6645-6649.	7.2	154
22	X-ray-charged bright persistent luminescence in NaYF4:Ln3+@NaYF4 nanoparticles for multidimensional optical information storage. Light: Science and Applications, 2021, 10, 132.	7.7	154
23	Understanding the Control of Singlet-Triplet Splitting for Organic Exciton Manipulating: A Combined Theoretical and Experimental Approach. Scientific Reports, 2015, 5, 10923.	1.6	151
24	Circularly Polarized Organic Room Temperature Phosphorescence from Amorphous Copolymers. Journal of the American Chemical Society, 2021, 143, 18527-18535.	6.6	132
25	Remote Câ^'H Activation of Quinolines through Copper atalyzed Radical Crossâ€Coupling. Chemistry - an Asian Journal, 2016, 11, 882-892.	1.7	130
26	Highly Efficient Ultralong Organic Phosphorescence through Intramolecular-Space Heavy-Atom Effect. Journal of Physical Chemistry Letters, 2019, 10, 595-600.	2.1	130
27	Amorphous Ionic Polymers with Color‶unable Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 18776-18782.	7.2	129
28	Enhancing Organic Phosphorescence by Manipulating Heavy-Atom Interaction. Crystal Growth and Design, 2016, 16, 808-813.	1.4	122
29	Multicolor Ultralong Organic Phosphorescence through Alkyl Engineering for 4D Coding Applications. Chemistry of Materials, 2019, 31, 5584-5591.	3.2	122
30	Recent Advances of Cocrystals with Room Temperature Phosphorescence. Advanced Optical Materials, 2021, 9, 2002197.	3.6	115
31	Utilizing d–pπ Bonds for Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, 6717-6721.	1.6	107
32	Organic Room Temperature Phosphorescence Materials for Biomedical Applications. Chemistry - an Asian Journal, 2020, 15, 947-957.	1.7	101
33	Manipulating the Stacking of Triplet Chromophores in the Crystal Form for Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 14140-14145.	7.2	98
34	Prolonging the lifetime of ultralong organic phosphorescence through dihydrogen bonding. Journal of Materials Chemistry C, 2018, 6, 226-233.	2.7	92
35	Manipulating the Ultralong Organic Phosphorescence of Small Molecular Crystals. Chemistry - A European Journal, 2020, 26, 4437-4448.	1.7	92
36	Simple Conjugated Polymers with Onâ€Chain Phosphorescent Iridium(III) Complexes: Toward Ratiometric Chemodosimeters for Detecting Trace Amounts of Mercury(II). Chemistry - A European Journal, 2010, 16, 12158-12167.	1.7	86

#	Article	IF	CITATIONS
37	Boronâ€Clusterâ€Enhanced Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, 9129-9133.	7.2	86
38	Ultralong Organic Phosphorescent Foams with High Mechanical Strength. Journal of the American Chemical Society, 2021, 143, 16256-16263.	6.6	84
39	Roomâ€Temperature Phosphorescence in Metalâ€Free Organic Materials. Annalen Der Physik, 2019, 531, 1800482.	0.9	79
40	Dynamically Adaptive Characteristics of Resonance Variation for Selectively Enhancing Electrical Performance of Organic Semiconductors. Angewandte Chemie - International Edition, 2013, 52, 10491-10495.	7.2	78
41	Single‣ayer Transition Metal Dichalcogenide Nanosheetâ€Assisted Assembly of Aggregationâ€Induced Emission Molecules to Form Organic Nanosheets with Enhanced Fluorescence. Advanced Materials, 2014, 26, 1735-1739.	11.1	77
42	Chalcogen atom modulated persistent room-temperature phosphorescence through intramolecular electronic coupling. Chemical Communications, 2018, 54, 9226-9229.	2.2	76
43	Hydrogen Bonding-Induced Morphology Dependence of Long-Lived Organic Room-Temperature Phosphorescence: A Computational Study. Journal of Physical Chemistry Letters, 2019, 10, 6948-6954.	2.1	76
44	Conjugated Asymmetric Donorâ€Substituted 1,3,5â€Triazines: New Host Materials for Blue Phosphorescent Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2011, 17, 10871-10878.	1.7	75
45	Molecular Engineering through Control of Structural Deformation for Highly Efficient Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2021, 60, 2058-2063.	7.2	75
46	A Highly Efficient Red Metal-free Organic Phosphor for Time-Resolved Luminescence Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 18103-18110.	4.0	74
47	Twisted Molecular Structure on Tuning Ultralong Organic Phosphorescence. Journal of Physical Chemistry Letters, 2018, 9, 335-339.	2.1	72
48	Tuning the Optoelectronic Properties of 4,4â€2- <i>N</i> , <i>N</i> â€2-Dicarbazole-biphenyl through Heteroatom Linkage: New Host Materials for Phosphorescent Organic Light-Emitting Diodes. Organic Letters, 2010, 12, 3438-3441.	2.4	71
49	Organic Room-Temperature Phosphorescent Materials: From Static to Dynamic. Journal of Physical Chemistry Letters, 2020, 11, 6191-6200.	2.1	71
50	Highly Efficient Blue Phosphorescence from Pillar‣ayer MOFs by Ligand Functionalization. Advanced Materials, 2022, 34, e2107612.	11.1	71
51	Reversible Ultralong Organic Phosphorescence for Visual and Selective Chloroform Detection. ACS Applied Materials & amp; Interfaces, 2018, 10, 33730-33736.	4.0	69
52	Controllable co-assembly of organic micro/nano heterostructures from fluorescent and phosphorescent molecules for dual anti-counterfeiting. Materials Horizons, 2019, 6, 984-989.	6.4	68
53	AgCl/Ag3PO4: A stable Ag-Based nanocomposite photocatalyst with enhanced photocatalytic activity for the degradation of parabens. Journal of Colloid and Interface Science, 2018, 515, 10-17.	5.0	64
54	Hydrogenâ€Bonded Organic Aromatic Frameworks for Ultralong Phosphorescence by Intralayer ï€â€"ï€ Interactions. Angewandte Chemie, 2018, 130, 4069-4073.	1.6	61

#	Article	IF	CITATIONS
55	Exceptional Blueshifted and Enhanced Aggregationâ€Induced Emission of Conjugated Asymmetric Triazines and Their Applications in Superamplified Detection of Explosives. Chemistry - A European Journal, 2012, 18, 15655-15661.	1.7	60
56	Achieving Dual Persistent Roomâ€Temperature Phosphorescence from Polycyclic Luminophores via Interâ€∤Intramolecular Charge Transfer. Advanced Optical Materials, 2019, 7, 1900511.	3.6	60
57	Ultralong Organic Phosphorescent Nanocrystals with Long-Lived Triplet Excited States for Afterglow Imaging and Photodynamic Therapy. ACS Applied Materials & Interfaces, 2020, 12, 18385-18394.	4.0	57
58	Recent Advances in the Catalytic Synthesis of 4-Quinolones. CheM, 2019, 5, 1059-1107.	5.8	56
59	Organic phosphorescent scintillation from copolymers by X-ray irradiation. Nature Communications, 2022, 13, .	5.8	55
60	Prolonging Ultralong Organic Phosphorescence Lifetime to 2.5 s through Confining Rotation in Molecular Rotor. Advanced Optical Materials, 2019, 7, 1800820.	3.6	53
61	Color-tunable ultralong organic phosphorescence materials for visual UV-light detection. Science China Chemistry, 2020, 63, 1443-1448.	4.2	52
62	Endowing matrix-free carbon dots with color-tunable ultralong phosphorescence by self-doping. Chemical Science, 2022, 13, 4406-4412.	3.7	51
63	Dynamic Ultralong Organic Phosphorescence by Photoactivation. Angewandte Chemie, 2018, 130, 8561-8567.	1.6	47
64	Hyper-Branched Phosphorescent Conjugated Polyelectrolytes for Time-Resolved Heparin Sensing. ACS Applied Materials & Interfaces, 2013, 5, 4562-4568.	4.0	46
65	Deep-red fluorescence from isolated dimers: a highly bright excimer and imaging <i>in vivo</i> . Chemical Science, 2020, 11, 6020-6025.	3.7	44
66	Pure Organic Persistent Roomâ€Temperature Phosphorescence at both Crystalline and Amorphous States. ChemPhysChem, 2018, 19, 2389-2396.	1.0	41
67	Photo-induced ultralong phosphorescence of carbon dots for thermally sensitive dynamic patterning. Chemical Science, 2021, 12, 8199-8206.	3.7	37
68	Amorphous Ionic Polymers with Colorâ€īunable Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, 18952-18958.	1.6	36
69	Excitation Wavelength Dependent Fluorescence of an ESIPT Triazole Derivative for Amine Sensing and Antiâ€Counterfeiting Applications. Angewandte Chemie, 2019, 131, 8865-8870.	1.6	36
70	Influence of Isomerism on Radioluminescence of Purely Organic Phosphorescence Scintillators. Angewandte Chemie - International Edition, 2021, 60, 27195-27200.	7.2	35
71	Room-Temperature Phosphorescence from Metal-Free Organic Materials in Solution: Origin and Molecular Design. Journal of Physical Chemistry Letters, 2019, 10, 1037-1042.	2.1	34
72	Ultralong Phosphorescence from Organic Ionic Crystals under Ambient Conditions. Angewandte Chemie, 2018, 130, 686-690.	1.6	33

#	Article	IF	CITATIONS
73	Polymorphism-Dependent Dynamic Ultralong Organic Phosphorescence. Research, 2020, 2020, 8183450.	2.8	33
74	Improved Energy Transfer through the Formation of the β Phase for Polyfluorenes Containing Phosphorescent Iridium(III) Complexes. Journal of Physical Chemistry C, 2011, 115, 11749-11757.	1.5	31
75	Computational design and selection of optimal building blocks and linking topologies for construction of high-performance host materials. RSC Advances, 2012, 2, 7860.	1.7	30
76	Hydrophilic Ultralong Organic Nanophosphors. Small, 2020, 16, e1906733.	5.2	30
77	All-in-One Deposition to Synergistically Manipulate Perovskite Growth for High-Performance Solar Cell. Research, 2020, 2020, 2763409.	2.8	30
78	Elastic organic crystals with ultralong phosphorescence for flexible anti-counterfeiting. Npj Flexible Electronics, 2021, 5, .	5.1	29
79	Manipulating the Stacking of Triplet Chromophores in the Crystal Form for Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, 14278-14283.	1.6	27
80	Halogen-doped phosphorescent carbon dots for grayscale patterning. Light: Science and Applications, 2022, 11, .	7.7	27
81	Ultraviolet afterglow. Nature Photonics, 2019, 13, 74-75.	15.6	25
82	Controllable Multiemission with Ultralong Organic Phosphorescence in Crystal by Isomerization. Advanced Optical Materials, 2019, 7, 1901076.	3.6	24
83	Microscopic Afterglow Bioimaging by Ultralong Organic Phosphorescent Nanoparticles in Living Cells and Zebrafish. Analytical Chemistry, 2021, 93, 6516-6522.	3.2	24
84	Progress of Research on Organic/Organometallic Mechanoluminescent Materials. Acta Chimica Sinica, 2018, 76, 246.	0.5	24
85	A purely organic D-Ï€-A-Ï€-D emitter with thermally activated delayed fluorescence and room temperature phosphorescence for near-white OLED. Chinese Chemical Letters, 2021, 32, 1367-1371.	4.8	23
86	Theoretical study of organic molecules containing N or S atoms as receptors for Hg(II) fluorescent sensors. Synthetic Metals, 2012, 162, 641-649.	2.1	22
87	Boronâ€Clusterâ€Enhanced Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, 9227-9231.	1.6	21
88	Biocompatible metal-free organic phosphorescent nanoparticles for efficiently multidrug-resistant bacteria eradication. Science China Materials, 2020, 63, 316-324.	3.5	20
89	Activating room-temperature phosphorescence of 1,8-naphthalimide by doping into aromatic dicarboxylic acids. Chemical Communications, 2022, 58, 3641-3644.	2.2	19
90	Atomic-resolved hierarchical structure of elastic π-conjugated molecular crystal for flexible organic photonics. CheM, 2022, 8, 1427-1441.	5.8	19

#	Article	IF	CITATIONS
91	Insight into chirality on molecular stacking for tunable ultralong organic phosphorescence. Journal of Materials Chemistry C, 2018, 6, 10179-10183.	2.7	18
92	D–A–D-type bipolar host materials with room temperature phosphorescence for high-efficiency green phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 1871-1878.	2.7	18
93	Confinement fluorescence effect (CFE): Lighting up life by enhancing the absorbed photon energy utilization efficiency of fluorophores. Coordination Chemistry Reviews, 2021, 440, 213979.	9.5	18
94	Roomâ€ŧemperature phosphorescence materials from crystalline to amorphous state. SmartMat, 2023, 4,	6.4	18
95	Highly efficient and stable blueâ€lightâ€emitting binaphtholâ€fluorene copolymers: A joint experimental and theoretical study of the mainâ€chain chirality. Journal of Polymer Science Part A, 2010, 48, 3868-3879.	2.5	17
96	Exploiting radical-pair intersystem crossing for maximizing singlet oxygen quantum yields in pure organic fluorescent photosensitizers. Chemical Science, 2020, 11, 10921-10927.	3.7	17
97	Molecular Engineering through Control of Structural Deformation for Highly Efficient Ultralong Organic Phosphorescence. Angewandte Chemie, 2021, 133, 2086-2091.	1.6	17
98	Dynamic room-temperature phosphorescence by reversible transformation of photo-induced free radicals. Science China Chemistry, 2022, 65, 1538-1543.	4.2	17
99	Tunable ultralong organic phosphorescence modulated by main-group elements with different Lewis acidity and basicity. Journal of Materials Chemistry C, 2020, 8, 14740-14747.	2.7	13
100	A Permanent Porous Hydrogen-Bonded Framework with Room-Temperature Phosphorescence. Crystal Growth and Design, 2021, 21, 3420-3427.	1.4	13
101	Supramolecular organic frameworks with ultralong phosphorescence via breaking π-Conjugated structures. Giant, 2020, 1, 100007.	2.5	12
102	Long Persistent Luminescence Enabled by Dissociation of Triplet Intermediate States in an Organic Guest/Host System. Journal of Physical Chemistry Letters, 2020, 11, 3582-3588.	2.1	12
103	Molecular conformation dependence of phosphorescence lifetime in organic aggregates. Dyes and Pigments, 2021, 193, 109520.	2.0	11
104	An effective signal amplifying strategy for copper (II) sensing by using in situ fluorescent proteins as energy donor of FRET. Sensors and Actuators B: Chemical, 2018, 259, 633-641.	4.0	10
105	Tunable microstructures of ultralong organic phosphorescence materials. Chemical Communications, 2021, 57, 7276-7279.	2.2	10
106	A Single-Component Supramolecular Organic Framework with Efficient Ultralong Phosphorescence. CCS Chemistry, 2021, 3, 466-472.	4.6	10
107	A Ratiometric Probe Composed of an Anionic Conjugated Polyelectrolyte and a Cationic Phosphorescent Iridium(<scp>III</scp>) Complex for Timeâ€ <scp>R</scp> esolved Detection of Hg(<scp>II</scp>) in Aqueous Media. Macromolecular Bioscience, 2013, 13, 1339-1346.	2.1	9
108	Relationships between main-chain chirality and photophysical properties in chiral conjugated polymers. Journal of Materials Chemistry C, 2014, 2, 7336-7347.	2.7	9

#	Article	IF	CITATIONS
109	Colour-tunable ultralong organic phosphorescence upon temperature stimulus. RSC Advances, 2019, 9, 19075-19078.	1.7	9
110	Subtle structure tailoring of metal-free triazine luminogens for highly efficient ultralong organic phosphorescence. Chinese Chemical Letters, 2019, 30, 1935-1938.	4.8	9
111	Influence of Isomerism on Radioluminescence of Purely Organic Phosphorescence Scintillators. Angewandte Chemie, 2021, 133, 27401-27406.	1.6	9
112	Green-synthesized, low-cost tetracyanodiazafluorene (TCAF) as electron injection material for organic light-emitting diodes. Chinese Chemical Letters, 2019, 30, 1969-1973.	4.8	8
113	Emission Editing in Eu/Tb binary complexes based on Au@SiO2 nanorods. Optics Express, 2019, 27, 27726.	1.7	8
114	Modulation of singlet and triplet excited states through σ spacers in ternary 1,3,5-triazines. RSC Advances, 2013, 3, 13782.	1.7	6
115	Theoretical Insight Into the Ultralong Room-Temperature Phosphorescence of Nonplanar Aromatic Hydrocarbon. Frontiers in Chemistry, 2021, 9, 740018.	1.8	6
116	Facile synthesis and optoelectronic properties of N,N-difluorenevinylaniline-based molecules. New Journal of Chemistry, 2012, 36, 1512.	1.4	5
117	Titanium Oxide Nanotubes Prepared by Anodic Oxidation and Their Application in Solar Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2011, 27, 1017-1025.	2.2	5
118	Modulating the triplet chromophore environment to prolong the emission lifetime of ultralong organic phosphorescence. Journal of Materials Chemistry C, 2022, 10, 13747-13752.	2.7	5
119	Photophysical properties of chirality: Experimental and theoretical studies of (R)- and (S)-binaphthol derivatives as a prototype case. Chemical Physics, 2013, 412, 34-40.	0.9	3
120	Multi-color Poly(Fluorenylene Ethynylene)s with On-Chain Phosphorescent Iridium(III) Complexes Through Energy Transfer. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 720-729.	1.9	3
121	Highly Efficient Heavy Atom Free Room Temperature Phosphorescence by Host-Guest Doping. Frontiers in Chemistry, 2021, 9, 781294.	1.8	3
122	Organic Hollow Microstructures with Room Temperature Phosphorescence. Advanced Optical Materials, 2022, 10, .	3.6	3
123	Organic Phosphorescence: Enhancing Ultralong Organic Phosphorescence by Effective Ï€â€Type Halogen Bonding (Adv. Funct. Mater. 9/2018). Advanced Functional Materials, 2018, 28, 1870060.	7.8	2
124	Organic Nanoparticles: Ultralong Phosphorescence of Waterâ€Soluble Organic Nanoparticles for In Vivo Afterglow Imaging (Adv. Mater. 33/2017). Advanced Materials, 2017, 29, .	11.1	1
125	Combining π-conjugated groups by flexible alkyl chains for ultralong organic phosphorescence by photo-activation. Journal of Luminescence, 2022, 247, 118894.	1.5	1
126	A π-orbital model to study substituent effects in organic room-temperature phosphorescent materials. Journal of Materials Chemistry C, 2022, 10, 9319-9325.	2.7	1

#	Article	IF	CITATIONS
127	Cancer Treatment: Ultrasmall Phosphorescent Polymer Dots for Ratiometric Oxygen Sensing and Photodynamic Cancer Therapy (Adv. Funct. Mater. 30/2014). Advanced Functional Materials, 2014, 24, 4822-4822.	7.8	Ο
128	Frontispiece: Amorphous Ionic Polymers with Colorâ€Tunable Ultralong Organic Phosphorescence. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0
129	Frontispiz: Amorphous Ionic Polymers with Colorâ€Tunable Ultralong Organic Phosphorescence. Angewandte Chemie, 2019, 131, .	1.6	Ο
130	Frontispiece: Manipulating the Ultralong Organic Phosphorescence of Small Molecular Crystals. Chemistry - A European Journal, 2020, 26, .	1.7	0