Nady A Fathy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5516826/publications.pdf

Version: 2024-02-01

304368 301761 1,718 62 22 39 h-index citations g-index papers 62 62 62 2043 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Carbon-based nanohybrid fabricated in-situ and boosted the adsorption of anionic reactive yellow dye. International Journal of Environmental Science and Technology, 2023, 20, 293-306.	1.8	7
2	High Performance of UiO-66 Metal–Organic Framework Modified with Melamine for Uptaking of Lead and Cadmium from Aqueous Solutions. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 2557-2567.	1.9	38
3	Effective treatment for environmental enhancing the performance of undesirable agroâ€waste in production of carbon nanostructures as adsorbent. Journal of Applied Polymer Science, 2021, 138, 50350.	1.3	6
4	Superior adsorption of cationic dye on novel bentonite/carbon composites. Asia-Pacific Journal of Chemical Engineering, $2021,16,.$	0.8	8
5	Carbon-based nanomaterials for wastewater treatment. , 2021, , 367-384.		1
6	Modified Carbon Nanostructures Obtained from Sugarcane Bagasse Hydrochar for Treating Chromium-polluted Water. Current Analytical Chemistry, 2021, 17, 975-988.	0.6	8
7	Micro-mesoporous modified activated carbon from corn husks for removal of hexavalent chromium ions. Applied Water Science, 2021, 11, 1.	2.8	17
8	Nanocarbon hybrid for simultaneous removal of arsenic, iron and manganese ions from aqueous solutions. Heliyon, 2021, 7, e08218.	1.4	16
9	Utilization of silica–chitosan nanocomposite for removal of 152+154Eu radionuclide from aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry, 2020, 323, 439-455.	0.7	20
10	Novel trends for synthesis of carbon nanostructures from agricultural wastes. , 2020, , 59-74.		8
11	Enhancement the photocatalytic degradation of methylene blue dye using fabricated CNTs/TiO2/AgNPs/Surfactant nanocomposites. Journal of Water Process Engineering, 2019, 28, 311-321.	2.6	69
12	Retarding the flammability of polypropylene based on the synergistic effect of montmorillonite and carbon nanotubes. Egyptian Journal of Chemistry, 2019 , .	0.1	0
13	Carbon xerogel/Carbon Nanotubes Nanohybrid Doped with Ti for Removal of Methylene Blue Dye. Egyptian Journal of Chemistry, 2019, .	0.1	2
14	<scp>M</scp> ultiâ€walled carbon nanotubes supported amorphous <scp>Fe₂O₃</scp> and <scp>Ag₂Oâ€"Fe₂O₃</scp> as <scp>F</scp> enton catalysts for degradation of <scp>m</scp> axilon red dye. Asia-Pacific Journal of Chemical Engineering, 2018, 13,	0.8	14
15	e2184. Microporous nanohybrids of carbon xerogels and multi-walled carbon nanotubes for removal of rhodamine B dye. Journal of Water Process Engineering, 2018, 23, 165-173.	2.6	29
16	Enhancing the pyrolysis of scrap rubber for carbon nanotubes/graphene production via chemical vapor deposition. Journal of Macromolecular Science - Pure and Applied Chemistry, 2018, 55, 347-354.	1.2	5
17	A novel catalyst of ceria-nanorods loaded on carbon xerogel for catalytic wet oxidation of methyl green dye. Journal of the Taiwan Institute of Chemical Engineers, 2018, 88, 234-242.	2.7	12
18	Novel approach for synthesizing different shapes of carbon nanotubes from rice straw residue. Journal of Environmental Chemical Engineering, 2018, 6, 6263-6274.	3.3	46

#	Article	IF	CITATIONS
19	Effect of Chemical Oxidation on the Adsorption Properties of Cationic Dye on Activated Carbons Prepared from Locally Atropa belladonna. Egyptian Journal of Chemistry, 2018, 61, 380-390.	0.1	3
20	Effects of phosphoric acid activation on the nanopore structures of carbon xerogel/carbon nanotubes hybrids and their capacitance storage. Adsorption, 2017, 23, 355-360.	1.4	12
21	Fabrication of single-walled carbon nanotubes from vulcanized scrap rubber via thermal chemical vapor deposition. RSC Advances, 2017, 7, 12938-12944.	1.7	8
22	Effect of nanosized CeO ₂ or ZnO loading on adsorption and catalytic properties of activated carbon. Adsorption Science and Technology, 2017, 35, 774-788.	1.5	17
23	Adsorption of solophenyl red 3BL polyazo dye onto amine-functionalized mesoporous carbons. Journal of Colloid and Interface Science, 2017, 505, 593-604.	5.0	43
24	Carbon nanotubes synthesis using carbonization of pretreated rice straw through chemical vapor deposition of camphor. RSC Advances, 2017, 7, 28535-28541.	1.7	73
25	Synthesis of a novel MnO 2 @carbon nanotubes-graphene hybrid catalyst (MnO 2 @CNT-G) for catalytic oxidation of basic red 18 dye (BR18). Journal of Water Process Engineering, 2017, 17, 95-101.	2.6	21
26	Free- and Ni-doped carbon xerogels catalysts for wet peroxide oxidation of methyl orange. Journal of Water Process Engineering, 2017, 16, 21-27.	2.6	24
27	Comparative study on the performance of carbon nanotubes prepared from agro- and xerogels as carbon supports. Journal of Analytical and Applied Pyrolysis, 2017, 128, 114-120.	2.6	31
28	Preparation, characterization and catalytic performance of mesoporous silicates derived from natural diatomite: Comparative studies. Journal of Water Process Engineering, 2017, 19, 112-119.	2.6	12
29	Synthesis and capacitance performance of phosphorous-enriched carbon xerogel. Journal of Sol-Gel Science and Technology, 2017, 84, 515-521.	1.1	6
30	Photodegradation of methyl orange dye by ZnO loaded onto carbon xerogels composites. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 4-12.	0.8	16
31	Preparation of Carbonaceous Hydrochar Adsorbents from Cellulose and Lignin Derived from Rice Straw. Egyptian Journal of Chemistry, 2017, 60, 8-9.	0.1	10
32	Sequestration of Methylene Blue and Lead ions by MWCNT Modified with Polyconducting Polymers. Egyptian Journal of Chemistry, 2017, .	0.1	2
33	Abatement of p-Nitrophenol from Aqueous Solutions Using Oxidized Carbon Fiber. Egyptian Journal of Chemistry, 2017, 60, 1-3.	0.1	11
34	Nitrogen and phosphorousâ€doped porous carbon xerogels as metalâ€free catalysts for environmental catalytic peroxide oxidation of 4â€nitrophenol. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 836-845.	0.8	21
35	Pore structure and adsorption properties of carbon xerogels derived from carbonization of tannic acid-resorcinol-formaldehyde resin. Journal of Analytical and Applied Pyrolysis, 2016, 119, 60-68.	2.6	31
36	Impact of chemical activation on the adsorption performance of common reed towards Cu(II) and Cd(II). International Journal of Mineral Processing, 2016, 157, 80-88.	2.6	69

#	Article	IF	Citations
37	Nanostructured activated carbon xerogels for removal of methomyl pesticide. Desalination and Water Treatment, 2016, 57, 9957-9970.	1.0	17
38	Equilibrium, kinetic and thermodynamic studies of Pb(II) adsorption from aqueous solutions on HCl-treated Egyptian kaolin. Journal of Environmental Chemical Engineering, 2016, 4, 1674-1684.	3.3	65
39	Green reduction of oxidized graphite to reduced graphene oxide using Zygophyllum album L.f.: Comparative adsorption studies on p-nitrophenol. Recent Innovations in Chemical Engineering, 2016, 08, 1-1.	0.2	0
40	Activated carbon xerogel–chitosan composite materials for catalytic wet peroxide oxidation under intensified process conditions. Journal of Environmental Chemical Engineering, 2015, 3, 1243-1251.	3.3	24
41	Biosorption and desorption studies on chromium(VI) by novel biosorbents of raw rutin and rutin resin. Journal of Environmental Chemical Engineering, 2015, 3, 1137-1145.	3.3	42
42	Effect of Physical and Chemical Activation on the Removal of Hexavalent Chromium Ions Using Palm Tree Branches. ISRN Environmental Chemistry, 2014, 2014, 1-10.	0.9	14
43	Sorption of Ammonium Ions onto Natural and Modified Egyptian Kaolinites: Kinetic and Equilibrium Studies. Advances in Physical Chemistry, 2014, 2014, 1-12.	2.0	11
44	Oxidative degradation of RB19 dye by a novel \hat{I}^3 -MnO2/MWCNT nanocomposite catalyst with H2O2. Journal of Environmental Chemical Engineering, 2013, 1, 858-864.	3.3	55
45	Comparative Biosorption Studies of Hexavalent Chromium Ion onto Raw and Modified Palm Branches. Advances in Physical Chemistry, 2013, 2013, 1-9.	2.0	23
46	Effectiveness of Alkali-Acid Treatment in Enhancement the Adsorption Capacity for Rice Straw: The Removal of Methylene Blue Dye., 2013, 2013, 1-15.		57
47	Modification of Adsorptive Properties of Bagasse Fly Ash for Uptaking Cadmium from Aqueous Solution. Environmental Research, Engineering and Management, 2013, 64, .	0.4	8
48	Textural and adsorption characteristics of carbon xerogel adsorbents for removal of Cu (II) ions from aqueous solution. Journal of Non-Crystalline Solids, 2012, 358, 741-747.	1.5	45
49	Enhancement of TiO2 behavior on photocatalytic oxidation of MO dye using TiO2/AC under visible irradiation and sunlight radiation. Separation and Purification Technology, 2012, 98, 270-279.	3.9	91
50	Activated carbon xerogels for the removal of the anionic azo dyes Orange II and Chromotrope 2R by adsorption and catalytic wet peroxide oxidation. Chemical Engineering Journal, 2012, 195-196, 112-121.	6.6	81
51	Effect of Activation Temperature on Textural and Adsorptive Properties for Activated Carbon Derived from Local Reed Biomass: Removal of p-Nitrophenol. Environmental Research, Engineering and Management, 2012, 59, .	0.4	13
52	Development of Porosity and Copper(II) Ion Adsorption Capacity by Activated Nano-Carbon Xerogels in Relation to Treatment Schemes. Adsorption Science and Technology, 2011, 29, 943-961.	1.5	10
53	Potential of nano-carbon xerogels in the remediation of dye-contaminated water discharges. Desalination, 2011, 265, 169-176.	4.0	47
54	Development of micro-mesoporous carbons from several seed hulls under varying conditions of activation. Microporous and Mesoporous Materials, 2011, 142, 518-525.	2.2	64

#	Article	IF	CITATION
55	Equilibrium Removal of Pb (II) Ions from Aqueous Solution onto Oxidized-KOH-Activated Carbons. Carbon Letters, 2011, 12, 1-7.	3.3	15
56	Equilibrium, kinetic and thermodynamic studies of the adsorption of acidic dye onto bagasse fly ash. Carbon Letters, 2011, 12, 143-151.	3.3	3
57	Utilization of Cotton Stalks-Biomass Waste in the Production of Carbon Adsorbents by KOH Activation for Removal of Dye-Contaminated Water. Carbon Letters, 2010, 11, 224-234.	3.3	19
58	Impact of Air Convection on H3PO4-Activated Biomass for Sequestration of Cu (II) and Cd (II) Ions. Carbon Letters, 2009, 10, 114-122.	3.3	9
59	Removal of methylene blue by carbons derived from peach stones by H3PO4 activation: Batch and column studies. Dyes and Pigments, 2008, 76, 282-289.	2.0	229
60	Modification in adsorption characteristics of activated carbon produced by H3PO4 under flowing gases. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 299, 79-87.	2.3	55
61	Effect of nitrogen functionalization on the adsorption performance of commercial charcoal activated with phosphoric acid., 0, 148, 178-187.		5
62	In2O3 catalyst supported on carbonaceous nanohybrid for enhancing the removal of methyl orange dye from aqueous solutions. , 0, 174, 344-353.		0