Yonggang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5516401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Organic–Inorganic Hybrid Material Based on Benzo[ghi]perylenetri-imide and Cyclic Titanium-Oxo Cluster for Efficient Perovskite and Organic Solar Cells. CCS Chemistry, 2022, 4, 880-888.	4.6	32
2	TiO2 nanoparticles via simple surface modification as cathode interlayer for efficient organic solar cells. Organic Electronics, 2022, 101, 106422.	1.4	8
3	Halloysite nanotube-based self-healing fluorescence hydrogels in fabricating 3D cube containing UV-sensitive QR code information. Journal of Colloid and Interface Science, 2022, 617, 353-362.	5.0	15
4	Functional Ligand-Decorated ZnO Nanoparticles as Cathode Interlayers for Efficient Organic Solar Cells. ACS Applied Energy Materials, 2022, 5, 1291-1297.	2.5	14
5	Naphthobistriazole based non-fused electron acceptors for organic solar cells. Journal of Materials Chemistry C, 2022, 10, 8070-8076.	2.7	7
6	Pyrene-functionalized halloysite nanotubes for simultaneously detecting and separating Hg(ii) in aqueous media: A comprehensive comparison on interparticle and intraparticle excimers. Nanotechnology Reviews, 2022, 11, 2038-2049.	2.6	0
7	Simple Sn-based coordination complex as cathode interlayer for efficient organic solar cells. Organic Electronics, 2022, 108, 106577.	1.4	1
8	Preparation of allylamine-grafted cellulose by Ce(IV): a desirable candidate of oral phosphate binders. Polymer Bulletin, 2021, 78, 2537-2552.	1.7	1
9	Responsive Zwitterionic Polymers with Humidity and Voltage Dual-Switching for Multilevel Date Encryption and Anticounterfeiting. Chemistry of Materials, 2021, 33, 1477-1488.	3.2	10
10	One-Pot Free Radical Polymerization/Hydroxyl-Isocyanate Reaction: A Facile Strategy to Synthesize Hyperbranched Glycopoly(MaM/IM) with Tunable Structures. Macromolecules, 2021, 54, 2068-2078.	2.2	0
11	Effective Synthesis of Ladder-type Oligo(<i>p</i> -aniline)s and Poly(<i>p</i> -aniline)s via Intramolecular S _N Ar Reaction. Organic Letters, 2021, 23, 2217-2221.	2.4	9
12	An Organic–Inorganic Hybrid Electrolyte as a Cathode Interlayer for Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 8526-8531.	7.2	54
13	An Organic–Inorganic Hybrid Electrolyte as a Cathode Interlayer for Efficient Organic Solar Cells. Angewandte Chemie, 2021, 133, 8607-8612.	1.6	16
14	Chemosensor-Anchored Halloysite Nanotubes for Detection and Removal of Hypochlorite in Water. ACS Applied Nano Materials, 2021, 4, 7435-7442.	2.4	15
15	Benzothiadiazole-Based Double-Cable Conjugated Polymers for Single-Component Organic Solar Cells with Efficiency over 4%. ACS Applied Polymer Materials, 2021, 3, 4645-4650.	2.0	12
16	Ti-Oxo Clusters with Peripheral Alkyl Groups as Cathode Interlayers for Efficient Organic Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 39671-39677.	4.0	14
17	Polymyxin B-modified conjugated oligomer nanoparticle for targeted identification and enhanced photodynamic antimicrobial therapy. Chemical Communications, 2021, 57, 11244-11247.	2.2	3
18	Ternary organic solar cells based on polymer donor, polymer acceptor and PCBM components. Chinese Chemical Letters, 2020, 31, 865-868.	4.8	38

Yonggang Wu

#	Article	IF	CITATIONS
19	End Group Engineering on the Side Chains of Conjugated Polymers toward Efficient Non-Fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 6151-6158.	4.0	16
20	Facile Preparation of Polymer-Grafted Halloysite Nanotubes via a Redox System: a Novel Approach to Construct Antibacterial Hydrogel. Macromolecular Research, 2020, 28, 948-952.	1.0	3
21	Development of a halloysite nanotube-based 19F NMR probe as a promising detection tool for H2O2. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	2
22	Synthesizing Organo/Hydrogel Hybrids with Diverse Programmable Patterns and Ultrafast Selfâ€Actuating Ability via a Siteâ€Specific "In Situ―Transformation Strategy. Advanced Functional Materials, 2020, 30, 2002163.	7.8	12
23	Coumarin-anchored halloysite nanotubes for highly selective detection and removal of Zn(II). Chemical Engineering Journal, 2020, 393, 124695.	6.6	30
24	Simple Route to Synthesize Fully Conjugated Ladder Isomer Copolymers with Carbazole Units. Polymers, 2019, 11, 1619.	2.0	3
25	Crystalline Cooperativity of Donor and Acceptor Segments in Doubleâ€Cable Conjugated Polymers toward Efficient Singleâ€Component Organic Solar Cells. Angewandte Chemie, 2019, 131, 15678-15686.	1.6	11
26	Crystalline Cooperativity of Donor and Acceptor Segments in Doubleâ€Cable Conjugated Polymers toward Efficient Singleâ€Component Organic Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 15532-15540.	7.2	53
27	A novel surface modification method upon halloysite nanotubes: A desirable cross-linking agent to construct hydrogels. Applied Clay Science, 2019, 182, 105259.	2.6	34
28	A facile one-step grafting of polyphosphonium onto halloysite nanotubes initiated by Ce(<scp>iv</scp>). Chemical Communications, 2019, 55, 1040-1043.	2.2	33
29	Oneâ€Step Route to Ladderâ€Type C–N Linked Conjugated Polymers. Macromolecular Chemistry and Physics, 2019, 220, 1900044.	1.1	7
30	Multifunctional Oligonucleotide-Functionalized Conjugated Oligomer Nanoparticles for Targeted Cancer Cell Imaging and Therapy. ACS Applied Bio Materials, 2019, 2, 1340-1347.	2.3	2
31	A diketopyrrolopyrrole-based macrocyclic conjugated molecule for organic electronics. Journal of Materials Chemistry C, 2019, 7, 3802-3810.	2.7	21
32	Small bandgap porphyrin-based polymer acceptors for non-fullerene organic solar cells. Journal of Materials Chemistry C, 2018, 6, 717-721.	2.7	22
33	Highly Efficient Synthesis of a Ladderâ€Type BNâ€Heteroacene and Polyheteroacene. Asian Journal of Organic Chemistry, 2018, 7, 465-470.	1.3	8
34	Facile preparation of hyperbranched glycopolymers via an AB3* inimer promoted by a hydroxy/cerium(iv) redox process. Polymer Chemistry, 2018, 9, 5024-5031.	1.9	10
35	Hyperbranched Glycopolymers of 2-(α-d-Mannopyranose) Ethyl Methacrylate and N,N'-Methylenebisacrylamide: Synthesis, Characterization and Multivalent Recognitions with Concanavalin A. Polymers, 2018, 10, 171.	2.0	7
36	Synthesis and Characterization of Fully Conjugated Ladder Naphthalene Bisimide Copolymers. Polymers, 2018, 10, 790.	2.0	6

YONGGANG WU

#	Article	IF	CITATIONS
37	Facile Synthesis of Ladderâ€Type Polyacenes with Peryleneâ€Fusedâ€Pyrene Structures. Macromolecular Chemistry and Physics, 2018, 219, 1800201.	1.1	4
38	Microwave-assisted synthesis of 4,9-linked pyrene-based ladder conjugated polymers. Journal of Polymer Science Part A, 2017, 55, 1285-1288.	2.5	9
39	Facile preparation of thermosensitive and water-soluble fluorescent polymer containing curcumin and its cell imaging. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 907-914.	1.8	1
40	Diketopyrrolopyrroleâ€Porphyrin Based Conjugated Polymers for Ambipolar Fieldâ€Effect Transistors. Chemistry - an Asian Journal, 2017, 12, 1861-1864.	1.7	11
41	A Novel Waterâ€Soluble Fluorescence Probe with Washâ€Free Cellular Imaging Capacity Based on AIE Characteristics. Macromolecular Rapid Communications, 2017, 38, 1600684.	2.0	15
42	Smart H ₂ O ₂ -Responsive Drug Delivery System Made by Halloysite Nanotubes and Carbohydrate Polymers. ACS Applied Materials & Interfaces, 2017, 9, 31626-31633.	4.0	77
43	Investigation of a halloysite-based fluorescence probe with a highly selective and sensitive "turn-on― response upon hydrogen peroxide. RSC Advances, 2017, 7, 55067-55073.	1.7	10
44	The Synthesis of Backbone Thermo and pH Responsive Hyperbranched Poly(Bis(N,N-Propyl Acryl) Tj ETQq0 0 0	rgBT_/Overl [,] 2 . 0	ock_10 Tf 50 4
45	Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Fieldâ€Effect Transistors and Polymer Solar Cells Processed from a Nonchlorinated Solvent. Advanced Materials, 2016, 28, 943-950.	11.1	155
46	A perylene bisimide derivative with a LUMO level of â^'4.56 eV for non-fullerene solar cells. Journal of Materials Chemistry C, 2016, 4, 4134-4137.	2.7	24
47	Synthesis, characterization and fluorescent properties of water-soluble glycopolymer bearing curcumin pendant residues. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1451-1458.	0.6	3
48	Ladder-Type Perylene Diimides Linked by Pyrene Bridges at Bay Area. ChemistrySelect, 2016, 1, 267-271.	0.7	10
49	Dynamic mechanical and shape memory properties of polybenzoxazines based on aminopropylâ€ŧerminated siloxanes. Journal of Applied Polymer Science, 2016, 133, .	1.3	13
50	Synthesis and characterization of curcumin-incorporated glycopolymers with enhanced water solubility and reduced cytotoxicity. Macromolecular Research, 2016, 24, 655-662.	1.0	3
51	Diketopyrrolopyrrole Polymers with Thienyl and Thiazolyl Linkers for Application in Field-Effect Transistors and Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 30328-30335.	4.0	26
52	A novel water-soluble fluorescent polymer based on perylene bisimides dyes: one-pot preparation and its bio-imaging. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 455-471.	1.9	9
53	Conjugated polymer with ternary electronâ€deficient units for ambipolar nanowire fieldâ€effect transistors. Journal of Polymer Science Part A, 2016, 54, 34-38.	2.5	19
54	Synergistic effect of aluminum hypophosphite and intumescent flame retardants in polylactide. Polymers for Advanced Technologies, 2015, 26, 255-265.	1.6	40

YONGGANG WU

#	Article	IF	CITATIONS
55	Synthesis and Characterization of Alternating Polymers Incorporating Boron-Chelated Heterochrysene Units. Polymers, 2015, 7, 1192-1204.	2.0	0
56	Preparation of the water-soluble fluorene-containing fluorescent polymer by one-pot method. Macromolecular Research, 2015, 23, 891-897.	1.0	8
57	Polyesters derived from itaconic acid for the properties and bio-based content enhancement of soybean oil-based thermosets. Green Chemistry, 2015, 17, 2383-2392.	4.6	144
58	Synthesis of Pyreneâ€based Planar Conjugated Polymers and the Regioisomers by Intramolecular Cyclization. Chinese Journal of Chemistry, 2015, 33, 431-440.	2.6	6
59	High-efficiency grafting of halloysite nanotubes by using ï€-conjugated polyfluorenes via "click― chemistry. Journal of Materials Science, 2015, 50, 4387-4395.	1.7	21
60	Selective Modification of Halloysite Nanotubes with 1-Pyrenylboronic Acid: A Novel Fluorescence Probe with Highly Selective and Sensitive Response to Hyperoxide. ACS Applied Materials & Interfaces, 2015, 7, 23805-23811.	4.0	56
61	Synthesis backbone-dual-responsive of hyperbranched poly(bis(N,N-ethyl acrylamide))s by RAFT. Macromolecular Research, 2014, 22, 1196-1202.	1.0	6
62	How a bio-based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A (DGEBA)/graphene composites. Journal of Materials Chemistry A, 2013, 1, 5081.	5.2	112
63	Synthesis of Conjugated Hyperbranched Polytriazoles Containing Truxene Units by Click Polymerization. Chinese Journal of Chemistry, 2012, 30, 861-868.	2.6	27
64	Synthesis and characterization of the novel inimer-containing fluorene units and preparation of blue light-emitting polymers. Polymer Bulletin, 2011, 67, 427-439.	1.7	0
65	Pure Blue-Light-Emitting Materials: Hyperbranched Ladder-Type Poly(<i>p</i> -phenylene)s Containing Truxene Units. Macromolecules, 2010, 43, 731-738.	2.2	51
66	Synthesis and selfâ€assembly of amphiphilic dendronized conjugated polymers. Journal of Polymer Science Part A, 2008, 46, 574-584.	2.5	20
67	Conjugated polymers containing electronâ€ŧransporting, holeâ€ŧransporting, and lightâ€emitting units in the polymer main chain. Journal of Polymer Science Part A, 2008, 46, 1349-1356.	2.5	28
68	Spiro-Bridged Ladder-Type Poly(<i>p</i> -phenylene)s: Towards Structurally Perfect Light-Emitting Materials. Journal of the American Chemical Society, 2008, 130, 7192-7193.	6.6	110
69	Synthesis of Monodisperse Spiro-Bridged Ladder-Type Oligo-p-phenylenes. Organic Letters, 2007, 9, 4435-4438.	2.4	56
70	Synthesis of Extremely Stable Blue Light Emitting Poly(spirobifluorene)s with Suzuki Polycondensation. Organic Letters, 2004, 6, 3485-3487.	2.4	108