Yonggang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5516401/publications.pdf

Version: 2024-02-01

331259 301761 1,716 70 21 39 citations h-index g-index papers 70 70 70 2319 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Fieldâ€Effect Transistors and Polymer Solar Cells Processed from a Nonchlorinated Solvent. Advanced Materials, 2016, 28, 943-950.	11.1	155
2	Polyesters derived from itaconic acid for the properties and bio-based content enhancement of soybean oil-based thermosets. Green Chemistry, 2015, 17, 2383-2392.	4.6	144
3	How a bio-based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A (DGEBA)/graphene composites. Journal of Materials Chemistry A, 2013, 1, 5081.	5.2	112
4	Spiro-Bridged Ladder-Type Poly(<i>p</i> pphenylene)s: Towards Structurally Perfect Light-Emitting Materials. Journal of the American Chemical Society, 2008, 130, 7192-7193.	6.6	110
5	Synthesis of Extremely Stable Blue Light Emitting Poly(spirobifluorene)s with Suzuki Polycondensation. Organic Letters, 2004, 6, 3485-3487.	2.4	108
6	Smart H ₂ O ₂ -Responsive Drug Delivery System Made by Halloysite Nanotubes and Carbohydrate Polymers. ACS Applied Materials & Samp; Interfaces, 2017, 9, 31626-31633.	4.0	77
7	Synthesis of Monodisperse Spiro-Bridged Ladder-Type Oligo-p-phenylenes. Organic Letters, 2007, 9, 4435-4438.	2.4	56
8	Selective Modification of Halloysite Nanotubes with 1-Pyrenylboronic Acid: A Novel Fluorescence Probe with Highly Selective and Sensitive Response to Hyperoxide. ACS Applied Materials & Samp; Interfaces, 2015, 7, 23805-23811.	4.0	56
9	An Organic–Inorganic Hybrid Electrolyte as a Cathode Interlayer for Efficient Organic Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 8526-8531.	7.2	54
10	Crystalline Cooperativity of Donor and Acceptor Segments in Doubleâ€Cable Conjugated Polymers toward Efficient Singleâ€Component Organic Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 15532-15540.	7.2	53
11	Pure Blue-Light-Emitting Materials: Hyperbranched Ladder-Type Poly(<i>p</i> properties of the containing truxene Units. Macromolecules, 2010, 43, 731-738.	2.2	51
12	Synergistic effect of aluminum hypophosphite and intumescent flame retardants in polylactide. Polymers for Advanced Technologies, 2015, 26, 255-265.	1.6	40
13	Ternary organic solar cells based on polymer donor, polymer acceptor and PCBM components. Chinese Chemical Letters, 2020, 31, 865-868.	4.8	38
14	A novel surface modification method upon halloysite nanotubes: A desirable cross-linking agent to construct hydrogels. Applied Clay Science, 2019, 182, 105259.	2.6	34
15	A facile one-step grafting of polyphosphonium onto halloysite nanotubes initiated by Ce(<scp>iv</scp>). Chemical Communications, 2019, 55, 1040-1043.	2.2	33
16	An Organic–Inorganic Hybrid Material Based on Benzo[ghi]perylenetri-imide and Cyclic Titanium-Oxo Cluster for Efficient Perovskite and Organic Solar Cells. CCS Chemistry, 2022, 4, 880-888.	4.6	32
17	Coumarin-anchored halloysite nanotubes for highly selective detection and removal of Zn(II). Chemical Engineering Journal, 2020, 393, 124695.	6.6	30
18	Conjugated polymers containing electronâ€transporting, holeâ€transporting, and lightâ€emitting units in the polymer main chain. Journal of Polymer Science Part A, 2008, 46, 1349-1356.	2.5	28

#	Article	IF	CITATIONS
19	Synthesis of Conjugated Hyperbranched Polytriazoles Containing Truxene Units by Click Polymerization. Chinese Journal of Chemistry, 2012, 30, 861-868.	2.6	27
20	Diketopyrrolopyrrole Polymers with Thienyl and Thiazolyl Linkers for Application in Field-Effect Transistors and Polymer Solar Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 30328-30335.	4.0	26
21	A perylene bisimide derivative with a LUMO level of â^'4.56 eV for non-fullerene solar cells. Journal of Materials Chemistry C, 2016, 4, 4134-4137.	2.7	24
22	Small bandgap porphyrin-based polymer acceptors for non-fullerene organic solar cells. Journal of Materials Chemistry C, 2018, 6, 717-721.	2.7	22
23	High-efficiency grafting of halloysite nanotubes by using π-conjugated polyfluorenes via "click― chemistry. Journal of Materials Science, 2015, 50, 4387-4395.	1.7	21
24	A diketopyrrolopyrrole-based macrocyclic conjugated molecule for organic electronics. Journal of Materials Chemistry C, 2019, 7, 3802-3810.	2.7	21
25	Synthesis and selfâ€assembly of amphiphilic dendronized conjugated polymers. Journal of Polymer Science Part A, 2008, 46, 574-584.	2.5	20
26	Conjugated polymer with ternary electronâ€deficient units for ambipolar nanowire fieldâ€effect transistors. Journal of Polymer Science Part A, 2016, 54, 34-38.	2.5	19
27	End Group Engineering on the Side Chains of Conjugated Polymers toward Efficient Non-Fullerene Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6151-6158.	4.0	16
28	An Organic–Inorganic Hybrid Electrolyte as a Cathode Interlayer for Efficient Organic Solar Cells. Angewandte Chemie, 2021, 133, 8607-8612.	1.6	16
29	A Novel Waterâ€Soluble Fluorescence Probe with Washâ€Free Cellular Imaging Capacity Based on AIE Characteristics. Macromolecular Rapid Communications, 2017, 38, 1600684.	2.0	15
30	Chemosensor-Anchored Halloysite Nanotubes for Detection and Removal of Hypochlorite in Water. ACS Applied Nano Materials, 2021, 4, 7435-7442.	2.4	15
31	Halloysite nanotube-based self-healing fluorescence hydrogels in fabricating 3D cube containing UV-sensitive QR code information. Journal of Colloid and Interface Science, 2022, 617, 353-362.	5.0	15
32	Ti-Oxo Clusters with Peripheral Alkyl Groups as Cathode Interlayers for Efficient Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39671-39677.	4.0	14
33	Functional Ligand-Decorated ZnO Nanoparticles as Cathode Interlayers for Efficient Organic Solar Cells. ACS Applied Energy Materials, 2022, 5, 1291-1297.	2.5	14
34	Dynamic mechanical and shape memory properties of polybenzoxazines based on aminopropylâ€terminated siloxanes. Journal of Applied Polymer Science, 2016, 133, .	1.3	13
35	Synthesizing Organo/Hydrogel Hybrids with Diverse Programmable Patterns and Ultrafast Selfâ€Actuating Ability via a Siteâ€Specific "In Situ―Transformation Strategy. Advanced Functional Materials, 2020, 30, 2002163.	7.8	12
36	Benzothiadiazole-Based Double-Cable Conjugated Polymers for Single-Component Organic Solar Cells with Efficiency over 4%. ACS Applied Polymer Materials, 2021, 3, 4645-4650.	2.0	12

3

#	Article	IF	CITATIONS
37	Diketopyrrolopyrroleâ€Porphyrin Based Conjugated Polymers for Ambipolar Fieldâ€Effect Transistors. Chemistry - an Asian Journal, 2017, 12, 1861-1864.	1.7	11
38	Crystalline Cooperativity of Donor and Acceptor Segments in Double able Conjugated Polymers toward Efficient Singleâ€Component Organic Solar Cells. Angewandte Chemie, 2019, 131, 15678-15686.	1.6	11
39	Ladder-Type Perylene Diimides Linked by Pyrene Bridges at Bay Area. ChemistrySelect, 2016, 1, 267-271.	0.7	10
40	Investigation of a halloysite-based fluorescence probe with a highly selective and sensitive "turn-on― response upon hydrogen peroxide. RSC Advances, 2017, 7, 55067-55073.	1.7	10
41	Facile preparation of hyperbranched glycopolymers via an AB3* inimer promoted by a hydroxy/cerium(iv) redox process. Polymer Chemistry, 2018, 9, 5024-5031.	1.9	10
42	Responsive Zwitterionic Polymers with Humidity and Voltage Dual-Switching for Multilevel Date Encryption and Anticounterfeiting. Chemistry of Materials, 2021, 33, 1477-1488.	3.2	10
43	A novel water-soluble fluorescent polymer based on perylene bisimides dyes: one-pot preparation and its bio-imaging. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 455-471.	1.9	9
44	Microwave-assisted synthesis of 4,9-linked pyrene-based ladder conjugated polymers. Journal of Polymer Science Part A, 2017, 55, 1285-1288.	2.5	9
45	Effective Synthesis of Ladder-type Oligo(<i>p</i> li>-aniline)s and Poly(<i>p</i> -aniline)s via Intramolecular S _N Ar Reaction. Organic Letters, 2021, 23, 2217-2221.	2.4	9
46	Preparation of the water-soluble fluorene-containing fluorescent polymer by one-pot method. Macromolecular Research, 2015, 23, 891-897.	1.0	8
47	Highly Efficient Synthesis of a Ladderâ€Type BNâ€Heteroacene and Polyheteroacene. Asian Journal of Organic Chemistry, 2018, 7, 465-470.	1.3	8
48	TiO2 nanoparticles via simple surface modification as cathode interlayer for efficient organic solar cells. Organic Electronics, 2022, 101, 106422.	1.4	8
49	Hyperbranched Glycopolymers of 2-(α-d-Mannopyranose) Ethyl Methacrylate and N,N'-Methylenebisacrylamide: Synthesis, Characterization and Multivalent Recognitions with Concanavalin A. Polymers, 2018, 10, 171.	2.0	7
50	Oneâ€Step Route to Ladderâ€Type Câ€"N Linked Conjugated Polymers. Macromolecular Chemistry and Physics, 2019, 220, 1900044.	1.1	7
51	Naphthobistriazole based non-fused electron acceptors for organic solar cells. Journal of Materials Chemistry C, 2022, 10, 8070-8076.	2.7	7
52	Synthesis backbone-dual-responsive of hyperbranched poly(bis(N,N-ethyl acrylamide))s by RAFT. Macromolecular Research, 2014, 22, 1196-1202.	1.0	6
53	Synthesis of Pyreneâ€based Planar Conjugated Polymers and the Regioisomers by Intramolecular Cyclization. Chinese Journal of Chemistry, 2015, 33, 431-440.	2.6	6
54	Synthesis and Characterization of Fully Conjugated Ladder Naphthalene Bisimide Copolymers. Polymers, 2018, 10, 790.	2.0	6

#	Article	IF	CITATIONS
55	The Synthesis of Backbone Thermo and pH Responsive Hyperbranched Poly(Bis(N,N-Propyl Acryl) Tj ETQq1 1 0.78	34314 rgBT	 <i> </i> Overlock
56	Facile Synthesis of Ladderâ€Type Polyacenes with Peryleneâ€Fusedâ€Pyrene Structures. Macromolecular Chemistry and Physics, 2018, 219, 1800201.	1.1	4
57	Synthesis, characterization and fluorescent properties of water-soluble glycopolymer bearing curcumin pendant residues. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1451-1458.	0.6	3
58	Synthesis and characterization of curcumin-incorporated glycopolymers with enhanced water solubility and reduced cytotoxicity. Macromolecular Research, 2016, 24, 655-662.	1.0	3
59	Simple Route to Synthesize Fully Conjugated Ladder Isomer Copolymers with Carbazole Units. Polymers, 2019, 11, 1619.	2.0	3
60	Facile Preparation of Polymer-Grafted Halloysite Nanotubes via a Redox System: a Novel Approach to Construct Antibacterial Hydrogel. Macromolecular Research, 2020, 28, 948-952.	1.0	3
61	Polymyxin B-modified conjugated oligomer nanoparticle for targeted identification and enhanced photodynamic antimicrobial therapy. Chemical Communications, 2021, 57, 11244-11247.	2.2	3
62	Multifunctional Oligonucleotide-Functionalized Conjugated Oligomer Nanoparticles for Targeted Cancer Cell Imaging and Therapy. ACS Applied Bio Materials, 2019, 2, 1340-1347.	2.3	2
63	Development of a halloysite nanotube-based 19F NMR probe as a promising detection tool for H2O2. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	2
64	Facile preparation of thermosensitive and water-soluble fluorescent polymer containing curcumin and its cell imaging. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 907-914.	1.8	1
65	Preparation of allylamine-grafted cellulose by Ce(IV): a desirable candidate of oral phosphate binders. Polymer Bulletin, 2021, 78, 2537-2552.	1.7	1
66	Simple Sn-based coordination complex as cathode interlayer for efficient organic solar cells. Organic Electronics, 2022, 108, 106577.	1.4	1
67	Synthesis and characterization of the novel inimer-containing fluorene units and preparation of blue light-emitting polymers. Polymer Bulletin, 2011, 67, 427-439.	1.7	O
68	Synthesis and Characterization of Alternating Polymers Incorporating Boron-Chelated Heterochrysene Units. Polymers, 2015, 7, 1192-1204.	2.0	0
69	One-Pot Free Radical Polymerization/Hydroxyl-Isocyanate Reaction: A Facile Strategy to Synthesize Hyperbranched Glycopoly(MaM/IM) with Tunable Structures. Macromolecules, 2021, 54, 2068-2078.	2.2	O
70	Pyrene-functionalized halloysite nanotubes for simultaneously detecting and separating $Hg(ii)$ in aqueous media: A comprehensive comparison on interparticle and intraparticle excimers. Nanotechnology Reviews, 2022, 11, 2038-2049.	2.6	0