Alexey N Solonin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5516205/publications.pdf Version: 2024-02-01

V N SO

#	Article	IF	CITATIONS
1	Features of Structure Formation in an Al–Fe–Mn Alloy upon Crystallization with Various Cooling Rates. Russian Journal of Non-Ferrous Metals, 2021, 62, 72-81.	0.6	1
2	Flow Stress Modelling and 3D Processing Maps of Al4.5Zn4.5Mg1Cu0.12Zr Alloy with Different Scandium Contents. Applied Sciences (Switzerland), 2021, 11, 4587.	2.5	11
3	Influence of Adding Modifying Elements and Homogenization Annealing on Laser Melting Process of the Modified AlZnMgCu with 4%Si Alloys. Materials, 2021, 14, 6154.	2.9	5
4	Effect of Aluminum, Iron and Chromium Alloying on the Structure and Mechanical Properties of (Ti-Ni)-(Cu-Zr) Crystalline/Amorphous Composite Materials. Metals, 2020, 10, 874.	2.3	6
5	Increasing strength of FFF three-dimensional printed parts by influencing on temperature-related parameters of the process. Rapid Prototyping Journal, 2020, 26, 107-121.	3.2	69
6	Peculiarities of the Microstructure and Properties of Parts Produced by the Direct Laser Deposition of 316L Steel Powder. Russian Journal of Non-Ferrous Metals, 2019, 60, 87-94.	0.6	5
7	Desktop Fabrication of Strong Poly (Lactic Acid) Parts: FFF Process Parameters Tuning. Materials, 2019, 12, 2071.	2.9	8
8	Design and Fabrication of Strong Parts from Poly (Lactic Acid) with a Desktop 3D Printer: A Case with Interrupted Shell. Polymers, 2019, 11, 760.	4.5	13
9	Evaluation of the Microstructure and Mechanical Properties of a New Modified Cast and Laser-Melted AA7075 Alloy. Materials, 2019, 12, 3430.	2.9	16
10	Microstructure and mechanical properties of a novel selective laser melted Al–Mg alloy with low Sc content. Materials Research Express, 2019, 6, 126595.	1.6	31
11	Structural evaluation and mechanical properties of AZ31/SiC nano-composite produced by friction stir welding process at various welding speeds. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233, 831-841.	1.1	12
12	Study of the Structural Evolution of a Two-Phase Titanium Alloy during Thermodeformation Treatment. Russian Journal of Non-Ferrous Metals, 2018, 59, 637-642.	0.6	1
13	Development of Heat-Resistant Aluminum Alloys for Electrical Engineering Purposes Based on the Al – Fe – Si System. Metal Science and Heat Treatment, 2018, 60, 360-366.	0.6	2
14	Effect of Laser Welding Process Parameters and Filler Metals on the Weldability and the Mechanical Properties of AA7020 Aluminium Alloy. Journal of Manufacturing and Materials Processing, 2018, 2, 33.	2.2	8
15	Strength of PLA Components Fabricated with Fused Deposition Technology Using a Desktop 3D Printer as a Function of Geometrical Parameters of the Process. Polymers, 2018, 10, 313.	4.5	185
16	The structure and mechanical properties of parts elaborated by direct laser deposition 316L stainless steel powder obtained in various ways. Journal of Physics: Conference Series, 2017, 941, 012040.	0.4	0
17	Effect of Pulse Laser Welding Parameters and Filler Metal on Microstructure and Mechanical Properties of Al-4.7Mg-0.32Mn-0.21Sc-0.1Zr Alloy. Metals, 2017, 7, 564.	2.3	16
18	Ways of optimization the process of three-dimensional laser cladding using a layer by layer strategy		2

of powder alloying. , 2016, , .

ALEXEY N SOLONIN

#	Article	IF	CITATIONS
19	Preparation and characterization of hybrid A359/(SiC+Si3N4) composites synthesized by stir/squeeze casting techniques. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 674, 18-24.	5.6	68
20	Microstructure, mechanical properties, and crystallization behavior of Zr-based bulk metallic glasses prepared under a low vacuum. Journal of Alloys and Compounds, 2016, 654, 87-94.	5.5	19
21	Hot deformation behaviour and fracture of 10CrMoWNb ferritic–martensitic steel. Materials & Design, 2015, 74, 44-54.	5.1	34
22	Structural changes in liquid Fe and Fe–B alloy on cooling. Journal of Molecular Liquids, 2015, 209, 233-238.	4.9	10
23	Boron-Containing Steel Structure and Properties at Room and Elevated Temperature. Metallurgist, 2015, 58, 992-997.	0.6	7
24	Converting high-boron steel pipe from round to hexagonal cross section. Steel in Translation, 2014, 44, 783-786.	0.3	1
25	Comparative study of the stress flow models for high-boron corrosion-resistant steel based on an Arrhenius-type equation and artificial neural networks. Russian Metallurgy (Metally), 2014, 2014, 527-531.	0.5	2
26	Study of the structure and mechanical properties of corrosion-resistant steel with a high concentration of boron at elevated temperatures. Physics of Metals and Metallography, 2014, 115, 809-813.	1.0	37
27	Structure and mechanical properties of Ni-Cu-Ti-Zr composite materials with amorphous phase. Physics of Metals and Metallography, 2013, 114, 773-778.	1.0	12
28	A study of softening processes in heating of cold-deformed sheets of low-alloy aluminum alloys. Metal Science and Heat Treatment, 2012, 54, 253-258.	0.6	0
29	Glass-formation and crystallization processes in Ag–Y–Cu alloys. Journal of Non-Crystalline Solids, 2012, 358, 1759-1763.	3.1	8
30	Phase transformations in Zr-based bulk metallic glass cyclically loaded before plastic yielding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 358-362.	5.6	22
31	Investigation of recrystallization in an Al-0.3 Mg alloy by the method of internal friction. Physics of Metals and Metallography, 2011, 112, 622-632.	1.0	19
32	Modeling for the structure evolution of alloys of the Al-Cu-Mg system during natural ageing. Russian Journal of Non-Ferrous Metals, 2011, 52, 44-49.	0.6	2
33	Modeling the evolution of the structure and properties of alloys for an Al-Zn-Mg system in ageing. Russian Journal of Non-Ferrous Metals, 2010, 51, 471-475.	0.6	0
34	Study of work hardening of quenched and naturally aged Al–Mg and Al–Cu alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 502, 111-117.	5.6	151
35	Calculation of the yield point of silumins by the characteristics of their structure. Russian Journal of Non-Ferrous Metals, 2009, 50, 234-241.	0.6	2
36	Use of a physical approach and artificial neural networks for the simulation of the relation between the yield strength of quenched Al-Si alloys and their structural characteristics. Russian Metallurgy (Metally), 2007, 2007, 524-528.	0.5	3

ALEXEY N SOLONIN

#	Article	IF	CITATIONS
37	Simulation of flow stress in Al-Mg alloys quenched after casting. Russian Journal of Non-Ferrous Metals, 2007, 48, 208-213.	0.6	0
38	Simulation of the flow stress of recrystallized single-phase alloys of the Al-Mg and Al-Cu systems. Russian Journal of Non-Ferrous Metals, 2007, 48, 286-290.	0.6	0
39	Simulating the yield strength of cast alloys in the Al-Mg system. Metal Science and Heat Treatment, 2007, 49, 526-532.	0.6	1
40	MMC Production Method Using Dynamic Consolidation of Mechanically Alloyed Aluminum and Silicon Carbide Powders. Materials Science Forum, 2002, 396-402, 289-296.	0.3	6