Edward B Stephens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5515988/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Interferon-Induced Protein BST-2 Restricts HIV-1 Release and Is Downregulated from the Cell Surface by the Viral Vpu Protein. Cell Host and Microbe, 2008, 3, 245-252.	5.1	922
2	Vpu Antagonizes BST-2–Mediated Restriction of HIV-1 Release via β-TrCP and Endo-Lysosomal Trafficking. PLoS Pathogens, 2009, 5, e1000450.	2.1	278
3	Compartmentalization of Simian Immunodeficiency Virus Replication within Secondary Lymphoid Tissues of Rhesus Macaques Is Linked to Disease Stage and Inversely Related to Localization of Virus-Specific CTL. Journal of Immunology, 2014, 193, 5613-5625.	0.4	127
4	HIV-1 Vpu Protein Antagonizes Innate Restriction Factor BST-2 via Lipid-embedded Helix-Helix Interactions. Journal of Biological Chemistry, 2012, 287, 58-67.	1.6	99
5	Oral Immunization of Macaques with Attenuated Vaccine Virus Induces Protection against Vaginally Transmitted AIDS. Journal of Virology, 1998, 72, 9069-9078.	1.5	73
6	Derivation and Biological Characterization of a Molecular Clone of SHIVKU-2 That Causes AIDS, Neurological Disease, and Renal Disease in Rhesus Macaques. Virology, 1999, 260, 295-307.	1.1	72
7	Deletion of the vpu Sequences prior to the env in a Simian–Human Immunodeficiency Virus Results in Enhanced Env Precursor Synthesis but Is Less Pathogenic for Pig-Tailed Macaques. Virology, 2002, 293, 252-261.	1.1	64
8	A Cell-Free Stock of Simian–Human Immunodeficiency Virus That Causes AIDS in Pig-Tailed Macaques Has a Limited Number of Amino Acid Substitutions in Both SIVmacand HIV-1 Regions of the Genome and Has Altered Cytotropism. Virology, 1997, 231, 313-321.	1.1	63
9	Identification of a Region within the Cytoplasmic Domain of the Subtype B Vpu Protein of Human Immunodeficiency Virus Type 1 (HIV-1) That Is Responsible for Retention in the Golgi Complex and Its Absence in the Vpu Protein from a Subtype C HIV-1. AIDS Research and Human Retroviruses, 2005, 21, 379-394.	0.5	57
10	Neuropathogenesis of Chimeric Simian/Human Immunodeficiency Virus infection In Pigâ€ŧailed and Rhesus Macaques. Brain Pathology, 1997, 7, 851-861.	2.1	53
11	Sequence Note: Comparison of Vpu Sequences from Diverse Geographical Isolates of HIV Type 1 Identifies the Presence of Highly Variable Domains, Additional Invariant Amino Acids, and a Signature Sequence Motif Common to Subtype C Isolates. AIDS Research and Human Retroviruses, 2000, 16, 1089-1095.	0.5	49
12	Scrambling of the amino acids within the transmembrane domain of Vpu results in a simian-human immunodeficiency virus (SHIVTM) that is less pathogenic for pig-tailed macaques. Virology, 2005, 339, 56-69.	1.1	42
13	The proteins of lymphocyte- and macrophage-tropic strains of simian immunodeficiency virus are processed differently in macrophages. Virology, 1995, 206, 535-544.	1.1	38
14	Chimeric SHIV that causes CD4 ⁺ T cell loss and AIDS in rhesus macaques. Journal of Medical Primatology, 1998, 27, 59-64.	0.3	38
15	Methamphetamine augment HIV-1 Tat mediated memory deficits by altering the expression of synaptic proteins and neurotrophic factors. Brain, Behavior, and Immunity, 2018, 71, 37-51.	2.0	38
16	The presence of the casein kinase II phosphorylation sites of Vpu enhances the CD4+ T cell loss caused by the simian–human immunodeficiency virus SHIVKU-lbMC33 in pig-tailed macaques. Virology, 2003, 313, 435-451.	1.1	37
17	Vpu: A Multifunctional Protein that Enhances the Pathogenesis of Human Immunodeficiency Virus Type 1. Current HIV Research, 2004, 2, 255-270.	0.2	37
18	Chronology of Genetic Changes in thevpu, env,andnefGenes of Chimeric Simian–Human Immunodeficiency Virus (Strain HXB2) during Acquisition of Virulence for Pig-Tailed Macaques. Virology, 1998, 248, 275-283.	1.1	35

#	Article	IF	CITATIONS
19	Substitution of the transmembrane domain of Vpu in simian–human immunodeficiency virus (SHIVKU1bMC33) with that of M2 of influenza A results in a virus that is sensitive to inhibitors of the M2 ion channel and is pathogenic for pig-tailed macaques. Virology, 2006, 344, 541-559.	1.1	35
20	A single amino acid substitution within the transmembrane domain of the human immunodeficiency virus type 1 Vpu protein renders simian–human immunodeficiency virus (SHIVKU-1bMC33) susceptible to rimantadine. Virology, 2006, 348, 449-461.	1.1	35
21	A Molecular Clone of Simian-Human Immunodeficiency Virus (ΔvpuSHIVKU-1bMC33) with a Truncated, Non-Membrane-Bound Vpu Results in Rapid CD4+ T Cell Loss and Neuro-AIDS in Pig-Tailed Macaques. Virology, 2000, 272, 112-126.	1.1	33
22	Characterization of a Neutralization-Escape Variant of SHIVKU-1, a Virus That Causes Acquired Immune Deficiency Syndrome in Pig-Tailed Macaques. Virology, 1999, 256, 54-63.	1.1	32
23	The Vpu Protein: New Concepts in Virus Release and CD4 Down-Modulation. Current HIV Research, 2010, 8, 240-252.	0.2	32
24	Differential virus restriction patterns of rhesus macaque and human APOBEC3A: Implications for lentivirus evolution. Virology, 2011, 419, 24-42.	1.1	31
25	Requirements of the membrane proximal tyrosine and dileucine-based sorting signals for efficient transport of the subtype C Vpu protein to the plasma membrane and in virus release. Virology, 2008, 378, 58-68.	1.1	28
26	Rhesus Macaques Infected with Macrophage-Tropic Simian Immunodeficiency Virus (SIVmacR71/17E) Exhibit Extensive Focal Segmental and Global Glomerulosclerosis. Journal of Virology, 1998, 72, 8820-8832.	1.5	28
27	Lymphocyte-Tropic Simian Immunodeficiency Virus Causes Persistent Infection in the Brains of Rhesus Monkeys. Virology, 1995, 213, 600-614.	1.1	27
28	A Simian Human Immunodeficiency Virus with a Nonfunctional Vpu (ΔvpuSHIVKU-1bMC33) Isolated from a Macaque with NeuroAIDS Has Selected for Mutations in Env and Nef That Contributed to Its Pathogenic Phenotype. Virology, 2001, 282, 123-140.	1.1	27
29	Simian–Human Immunodeficiency Virus-Associated Nephropathy in Macaques. AIDS Research and Human Retroviruses, 2000, 16, 1295-1306.	0.5	26
30	Infected Macaques That Controlled Replication of SIVmacor Nonpathogenic SHIV Developed Sterilizing Resistance against Pathogenic SHIVKU-1. Virology, 1997, 234, 328-339.	1.1	24
31	Role of the single deaminase domain APOBEC3A in virus restriction, retrotransposition, DNA damage and cancer. Journal of General Virology, 2016, 97, 1-17.	1.3	24
32	Vpu-mediated CD4 down-regulation and degradation is conserved among highly divergent SIVcpz strains. Virology, 2005, 335, 46-60.	1.1	23
33	Pathogenesis of lymphocyte-tropic and macrophagetropic SIVmacinfection in the brain. Journal of NeuroVirology, 1995, 1, 78-91.	1.0	22
34	Modulation of the severe CD4+ T-cell loss caused by a pathogenic simian–human immunodeficiency virus by replacement of the subtype B vpu with the vpu from a subtype C HIV-1 clinical isolate. Virology, 2008, 371, 86-97.	1.1	21
35	The Primary Phase of Infection by Pathogenic Simian–Human Immunodeficiency Virus Results in Disruption of the Blood–Brain Barrier. AIDS Research and Human Retroviruses, 2003, 19, 837-846.	0.5	19
36	SIV-Associated Nephropathy in Rhesus Macaques Infected with Lymphocyte-Tropic SIV _{mac} 239, AIDS Research and Human Retroviruses, 1998, 14, 1163-1180,	0.5	18

EDWARD B STEPHENS

#	Article	IF	CITATIONS
37	Pathogenic and Nef-Interrupted Simian–Human Immunodeficiency Viruses Traffic to the Macaque CNS and Cause Astrocytosis Early after Inoculation. Virology, 2002, 296, 39-51.	1.1	18
38	APOBEC3G Expression Is Restricted to Neurons in the Brains of Pigtailed Macaques. AIDS Research and Human Retroviruses, 2006, 22, 541-550.	0.5	17
39	Simian-Human Immunodeficiency Virus (SHIV) Containing the <i>nef</i> /Long Terminal Repeat Region of the Highly Virulent SIV _{smm} PBj14 Causes PBj-Like Activation of Cultured Resting Peripheral Blood Mononuclear Cells, but the Chimera Showed No Increase in Virulence. Journal of Virology, 1998. 72. 5207-5214.	1.5	17
40	Significance of macrophage tropism of SIV in the macaque model of HIV disease. Journal of Leukocyte Biology, 1997, 62, 12-19.	1.5	16
41	Membrane raft association of the Vpu protein of human immunodeficiency virus type 1 correlates with enhanced virus release. Virology, 2010, 408, 89-102.	1.1	16
42	Identification of amino acids within the second alpha helical domain of the human immunodeficiency virus type 1 Vpu that are critical for preventing CD4 cell surface expression. Virology, 2010, 397, 104-112.	1.1	15
43	BST-2 mediated restriction of simian–human immunodeficiency virus. Virology, 2010, 406, 312-321.	1.1	13
44	Mutations in the highly conserved SLQYLA motif of Vif in a simian–human immunodeficiency virus result in a less pathogenic virus and are associated with G-to-A mutations in the viral genome. Virology, 2009, 383, 362-372.	1.1	12
45	Lentivirus restriction by diverse primate APOBEC3A proteins. Virology, 2013, 442, 82-96.	1.1	12
46	APOBEC3G Expression Is Restricted to Epithelial Cells of the Proximal Convoluted Tubules and Is Not Expressed in the Glomeruli of Macaques. Journal of Histochemistry and Cytochemistry, 2007, 55, 63-70.	1.3	11
47	Analysis of Select Herpes Simplex Virus 1 (HSV-1) Proteins for Restriction of Human Immunodeficiency Virus Type 1 (HIV-1): HSV-1 gM Protein Potently Restricts HIV-1 by Preventing Intracellular Transport and Processing of Env gp160. Journal of Virology, 2018, 92, .	1.5	11
48	Comparison of Vif Sequences from Diverse Geographical Isolates of HIV Type 1 and SIVcpzIdentifies Substitutions Common to Subtype C Isolates and Extensive Variation in a Proposed Nuclear Transport Inhibition Signal. AIDS Research and Human Retroviruses, 2001, 17, 169-177.	0.5	10
49	Early dysregulation of cripto-1 and immunomodulatory genes in the cerebral cortex in a macaque model of neuroAIDS. Neuroscience Letters, 2006, 410, 94-99.	1.0	10
50	Immunoglobulin VH gene diversity and somatic hypermutation during SIV infection of rhesus macaques. Immunogenetics, 2015, 67, 355-370.	1.2	9
51	Comparison of the replication and persistence of simian-human immunodeficiency viruses expressing Vif proteins with mutation of the SLQYLA or HCCH domains in macaques. Virology, 2010, 404, 187-203.	1.1	8
52	Prolonged Infection in Rhesus Macaques with Simian Immunodeficiency Virus (SIVmac239) Results in Animal-Specific and Rarely Tissue-Specific Selection ofnefVariants. Virology, 1996, 220, 522-529.	1.1	7
53	Cellular HIV-1 inhibition by truncated old world primate APOBEC3A proteins lacking a complete deaminase domain. Virology, 2014, 468-470, 532-544.	1.1	6
54	Fusion of the upstream vpu sequences to the env of simian human immunodeficiency virus (SHIVKU-1bMC33) results in the synthesis of two envelope precursor proteins, increased numbers of virus particles associated with the cell surface and is pathogenic for pig-tailed macaques. Virology, 2004, 323, 91-107.	1.1	5

#	Article	IF	CITATIONS
55	Analysis of herpes simplex type 1 gB, gD, and gH/gL on production of infectious HIV-1: HSV-1 gD restricts HIV-1 by exclusion of HIV-1 Env from maturing viral particles. Retrovirology, 2019, 16, 9.	0.9	5
56	Infection of human astrocytoma cells with simian-human immunodeficiency virus results in up-regulation of gene expression and altered growth properties. Neuroscience Letters, 2003, 340, 201-204.	1.0	4
57	Vpu Downmodulates Two Distinct Targets, Tetherin and Gibbon Ape Leukemia Virus Envelope, through Shared Features in the Vpu Cytoplasmic Tail. PLoS ONE, 2012, 7, e51741.	1.1	4
58	Simian–Human immunodeficiency viruses expressing chimeric subtype B/C Vpu proteins demonstrate the importance of the amino terminal and transmembrane domains in the rate of CD4+ T cell loss in macaques. Virology, 2013, 435, 395-405.	1.1	4
59	Analysis of the N-terminal positively charged residues of the simian immunodeficiency virus Vif reveals a critical amino acid required for the antagonism of rhesus APOBEC3D, G, and H. Virology, 2014, 449, 140-149.	1.1	2
60	A chimeric human APOBEC3A protein with a three amino acid insertion confers differential HIV-1 and adeno-associated virus restriction. Virology, 2016, 498, 149-163.	1.1	2
61	Structural Domains of the Herpes Simplex Virus 1 gD Protein That Restrict Human Immunodeficiency Virus Particle Infectivity. Journal of Virology, 2021, 95, .	1.5	2