Robert S Wallis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/551564/publications.pdf

Version: 2024-02-01

105 papers 8,957 citations

41258 49 h-index 92 g-index

107 all docs

107 docs citations

107 times ranked

8095 citing authors

#	Article	IF	Citations
1	Host-directed immunotherapy of viral and bacterial infections: past, present and future. Nature Reviews Immunology, 2023, 23, 121-133.	10.6	71
2	Lung and blood early biomarkers for host-directed tuberculosis therapies: Secondary outcome measures from a randomized controlled trial. PLoS ONE, 2022, 17, e0252097.	1.1	4
3	Quantitative Systems Pharmacology Modeling Framework of Autophagy in Tuberculosis: Application to Adjunctive Metformin Host-Directed Therapy. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	2
4	Mycobacterial Growth Inhibition Assay (MGIA) as a Host Directed Diagnostic Tool for the Evaluation of the Immune Response in Subjects Living With Type 2 Diabetes Mellitus. Frontiers in Cellular and Infection Microbiology, 2021, 11, 640707.	1.8	2
5	Adjunctive host-directed therapies for pulmonary tuberculosis: a prospective, open-label, phase 2, randomised controlled trial. Lancet Respiratory Medicine, the, 2021, 9, 897-908.	5.2	64
6	Clinical Trials of TB-HDT Candidates. , 2021, , 285-293.		0
7	Lifetime burden of disease due to incident tuberculosis: a global reappraisal including post-tuberculosis sequelae. The Lancet Global Health, 2021, 9, e1679-e1687.	2.9	74
8	Protein binding of rifampicin is not saturated when using high-dose rifampicin. Journal of Antimicrobial Chemotherapy, 2019, 74, 986-990.	1.3	13
9	TB sequel: incidence, pathogenesis and risk factors of long-term medical and social sequelae of pulmonary TB – a study protocol. BMC Pulmonary Medicine, 2019, 19, 4.	0.8	45
10	Pan-tuberculosis regimens: an argument for. Lancet Respiratory Medicine, the, 2018, 6, 239-240.	5.2	16
11	A patient-level pooled analysis of treatment-shortening regimens for drug-susceptible pulmonary tuberculosis. Nature Medicine, 2018, 24, 1708-1715.	15.2	219
12	Mycobactericidal activity of bedaquiline plus rifabutin or rifampin in ex vivo whole blood cultures of healthy volunteers: A randomized controlled trial. PLoS ONE, 2018, 13, e0196756.	1.1	6
13	Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nature Reviews Immunology, 2018, 18, 575-589.	10.6	241
14	High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infectious Diseases, The, 2017, 17, 39-49.	4.6	294
15	Application of a whole blood mycobacterial growth inhibition assay to study immunity against Mycobacterium tuberculosis in a high tuberculosis burden population. PLoS ONE, 2017, 12, e0184563.	1.1	14
16	Mathematical Models of Tuberculosis Reactivation and Relapse. Frontiers in Microbiology, 2016, 7, 669.	1.5	29
17	Vitamin D as Adjunctive Host-Directed Therapy in Tuberculosis: A Systematic Review. Open Forum Infectious Diseases, 2016, 3, ofw151.	0.4	31
18	Cardiac safety of extensively drug-resistant tuberculosis regimens including bedaquiline, delamanid and clofazimine. European Respiratory Journal, 2016, 48, 1526-1527.	3.1	36

#	Article	IF	CITATIONS
19	Safety and Immunogenicity of the Recombinant BCG Vaccine AERAS-422 in Healthy BCG-naÃ⁻ve Adults: A Randomized, Active-controlled, First-in-human Phase 1 Trial. EBioMedicine, 2016, 7, 278-286.	2.7	50
20	Tuberculosisâ€"advances in development of new drugs, treatment regimens, host-directed therapies, and biomarkers. Lancet Infectious Diseases, The, 2016, 16, e34-e46.	4.6	223
21	Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infectious Diseases, The, 2016, 16, e47-e63.	4.6	265
22	Activity of nitazoxanide and tizoxanide against Mycobacterium tuberculosis inÂvitro and in whole blood culture. Tuberculosis, 2016, 98, 92-96.	0.8	17
23	Sputum culture conversion in new TB regimens. Lancet Respiratory Medicine, the, 2015, 3, e18-e19.	5.2	2
24	Towards host-directed therapies for tuberculosis. Nature Reviews Drug Discovery, 2015, 14, 511-512.	21.5	110
25	Sputum culture conversion as a tuberculosis biomarker: a glass half empty or half full?. Lancet Respiratory Medicine,the, 2015, 3, 174-175.	5.2	5
26	Advancing host-directed therapy for tuberculosis. Nature Reviews Immunology, 2015, 15, 255-263.	10.6	276
27	Early Biomarkers and Regulatory Innovation in Multidrug-Resistant Tuberculosis. Clinical Infectious Diseases, 2015, 61, S160-S163.	2.9	10
28	Month 2 Culture Status and Treatment Duration as Predictors of Recurrence in Pulmonary Tuberculosis: Model Validation and Update. PLoS ONE, 2015, 10, e0125403.	1.1	46
29	Corticosteroid Effects on Sputum Culture in Pulmonary Tuberculosis: A Meta-Regression Analysis. Open Forum Infectious Diseases, 2014, 1, ofu020.	0.4	15
30	Mycobactericidal Activity of Sutezolid (PNU-100480) in Sputum (EBA) and Blood (WBA) of Patients with Pulmonary Tuberculosis. PLoS ONE, 2014, 9, e94462.	1.1	121
31	Population Pharmacokinetic/Pharmacodynamic Analysis of the Bactericidal Activities of Sutezolid (PNU-100480) and Its Major Metabolite against Intracellular Mycobacterium tuberculosis in <i>Ex Vivo</i> Whole-Blood Cultures of Patients with Pulmonary Tuberculosis. Antimicrobial Agents and Chemotherapy. 2014, 58, 3306-3311.	1.4	46
32	Lack of a Therapeutic Role for Interferon in Patients With Tuberculosis. Journal of Infectious Diseases, 2014, 209, 627-628.	1.9	8
33	Inhibition of Mycobacterial Growth <i>In Vitro</i> following Primary but Not Secondary Vaccination with Mycobacterium bovis BCG. Vaccine Journal, 2013, 20, 1683-1689.	3.2	85
34	Early bactericidal activity of new drug regimens for tuberculosis. Lancet, The, 2013, 381, 111-112.	6.3	7
35	Tuberculosis biomarkers discovery: developments, needs, and challenges. Lancet Infectious Diseases, The, 2013, 13, 362-372.	4.6	208
36	Sustainable Tuberculosis Drug Development. Clinical Infectious Diseases, 2013, 56, 106-113.	2.9	27

#	Article	IF	CITATIONS
37	Application of a Stochastic Modeling to Assess the Evolution of Tuberculous and Non-Tuberculous Mycobacterial Infection in Patients Treated with Tumor Necrosis Factor Inhibitors. PLoS ONE, 2013, 8, e55017.	1.1	13
38	Month 2 Culture Status and Treatment Duration as Predictors of Tuberculosis Relapse Risk in a Meta-Regression Model. PLoS ONE, 2013, 8, e71116.	1.1	58
39	Sterilizing Activities of Novel Combinations Lacking First- and Second-Line Drugs in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 3114-3120.	1.4	138
40	Rapid Evaluation in Whole Blood Culture of Regimens for XDR-TB Containing PNU-100480 (Sutezolid), TMC207, PA-824, SQ109, and Pyrazinamide. PLoS ONE, 2012, 7, e30479.	1.1	63
41	SQ109 and PNU-100480 interact to kill Mycobacterium tuberculosis in vitro. Journal of Antimicrobial Chemotherapy, 2012, 67, 1163-1166.	1.3	42
42	Biologics and Infections: Lessons from Tumor Necrosis Factor Blocking Agents. Infectious Disease Clinics of North America, 2011, 25, 895-910.	1.9	36
43	Chapter 22: Assessment of Whole-Blood Bactericidal Activity in the Evaluation of New Antituberculosis Drugs. Progress in Respiratory Research, 2011, , 220-226.	0.1	2
44	Biomarker-Assisted Dose Selection for Safety and Efficacy in Early Development of PNU-100480 for Tuberculosis. Antimicrobial Agents and Chemotherapy, 2011, 55, 567-574.	1.4	115
45	Pharmacokinetics and Wholeâ∈Blood Bactericidal Activity against <i>Mycobacterium tuberculosis</i> Single Doses of PNUâ€100480 in Healthy Volunteers. Journal of Infectious Diseases, 2010, 202, 745-751.	1.9	95
46	Treatment of HIVâ€Related Inflammatory Cerebral Cryptococcoma with Adalimumab. Clinical Infectious Diseases, 2010, 50, e7-e10.	2.9	54
47	The risk of tuberculosis related to tumour necrosis factor antagonist therapies: a TBNET consensus statement. European Respiratory Journal, 2010, 36, 1185-1206.	3.1	444
48	Pulmonary Infectious Complications of Tumor Necrosis Factor Blockade. Infectious Disease Clinics of North America, 2010, 24, 681-692.	1.9	13
49	Biomarkers and diagnostics for tuberculosis: progress, needs, and translation into practice. Lancet, The, 2010, 375, 1920-1937.	6.3	404
50	Biomarkers for tuberculosis disease activity, cure, and relapse – Authors' reply. Lancet Infectious Diseases, The, 2010, 10, 70-71.	4.6	7
51	Biomarkers for tuberculosis disease activity, cure, and relapse. Lancet Infectious Diseases, The, 2010, 10, 68-69.	4.6	64
52	Significance of Early Secreted Antigenic Target 6–Specific T Cell Depletion after HIVâ€1 Infection. Journal of Infectious Diseases, 2009, 200, 158-158.	1.9	0
53	Adalimumab Treatment of Lifeâ€∓hreatening Tuberculosis. Clinical Infectious Diseases, 2009, 48, 1429-1432.	2.9	113
54	Strain specificity of antimycobacterial immunity in whole blood culture after cure of tuberculosis. Tuberculosis, 2009, 89, 221-224.	0.8	14

#	Article	IF	CITATIONS
55	Biomarkers for tuberculosis disease activity, cure, and relapse. Lancet Infectious Diseases, The, 2009, 9, 162-172.	4.6	164
56	Biomarkers of Disease Activity, Cure, and Relapse in Tuberculosis. Clinics in Chest Medicine, 2009, 30, 783-796.	0.8	20
57	Advances in Immunotherapy for Tuberculosis Treatment. Clinics in Chest Medicine, 2009, 30, 769-782.	0.8	54
58	Biomarkers for tuberculosis disease status and diagnosis. Current Opinion in Pulmonary Medicine, 2009, 15, 181-187.	1.2	60
59	Infectious complications of tumor necrosis factor blockade. Current Opinion in Infectious Diseases, 2009, 22, 403-409.	1.3	78
60	Mathematical modeling of the cause of tuberculosis during tumor necrosis factor blockade. Arthritis and Rheumatism, 2008, 58, 947-952.	6.7	54
61	Acquired rifamycin resistance: pharmacology and biology. Expert Review of Anti-Infective Therapy, 2008, 6, 223-230.	2.0	5
62	Tumour necrosis factor antagonists: structure, function, and tuberculosis risks. Lancet Infectious Diseases, The, 2008, 8, 601-611.	4.6	265
63	Therapeutic Use of Infliximab in Tuberculosis to Control Severe Paradoxical Reaction of the Brain and Lymph Nodes. Clinical Infectious Diseases, 2008, 47, e83-e85.	2.9	159
64	Mycobacterial Disease Attributable to Tumor Necrosis Factor–α Blockers. Clinical Infectious Diseases, 2008, 47, 1603-1605.	2.9	8
65	Surrogate markers to assess new therapies for drug-resistant tuberculosis. Expert Review of Anti-Infective Therapy, 2007, 5, 163-168.	2.0	9
66	Persistence, Not Resistance, Is the Cause of Loss of Isoniazid Effect. Journal of Infectious Diseases, 2007, 195, 1870-1871.	1.9	17
67	Corticosteroids and HIV infection: a review of experience. Current Opinion in HIV and AIDS, 2007, 2, 213-218.	1.5	2
68	Bactericidal activity of OPC-67683 against drug-tolerant Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 2007, 60, 994-998.	1.3	55
69	Structural–Functional Relationships of TNF-Alpha Antagonists: Next Steps. Journal of Investigative Dermatology Symposium Proceedings, 2007, 12, 46-47.	0.8	0
70	Reactivation of Latent Tuberculosis by TNF Blockade: The Role of Interferon \hat{I}^3 . Journal of Investigative Dermatology Symposium Proceedings, 2007, 12, 16-21.	0.8	53
71	Here Todayâ€"Gone Tomorrow: The Case for Transient Acute Tuberculosis Infection. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 734-735.	2.5	39
72	Tumor necrosis factor- \hat{l}_{\pm} inhibitors and granulomatous infectious. Drug Discovery Today Disease Mechanisms, 2006, 3, 295-300.	0.8	2

#	Article	IF	CITATIONS
73	Glutathione and growth inhibition of Mycobacterium tuberculosis in healthy and HIV infected subjects. AIDS Research and Therapy, 2006, 3, 5.	0.7	39
74	Tumor Necrosis Factor Antagonists: Different Kinetics and/or Mechanisms of Action May Explain Differences in the Risk for Developing Granulomatous Infection. Seminars in Arthritis and Rheumatism, 2006, 36, 159-167.	1.6	207
75	Tumorâ∈Necrosisâ∈Factor Blockers: Differential Effects on Mycobacterial Immunity. Journal of Infectious Diseases, 2006, 194, 486-492.	1.9	169
76	Tumor necrosis factor and granuloma biology: Explaining the differential infection risk of etanercept and infliximab. Seminars in Arthritis and Rheumatism, 2005, 34, 34-38.	1.6	141
77	Reactivation of Latent Granulomatous Infections by Infliximab. Clinical Infectious Diseases, 2005, 41, S194-S198.	2.9	178
78	Immunoadjuvant Prednisolone Therapy for HIVâ€Associated Tuberculosis: A Phase 2 Clinical Trial in Uganda. Journal of Infectious Diseases, 2005, 191, 856-865.	1.9	137
79	Can Studies of the Early Bactericidal Activity of Rifapentine Tell Us How to Prevent Acquired Rifamycin-Resistant Relapse?. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 4-5.	2.5	2
80	Clinical, Microbiological, and Immunological Characteristics in HIV-Infected Subjects at Risk for DisseminatedMycobacterium aviumComplex Disease: An AACTG Study. AIDS Research and Human Retroviruses, 2005, 21, 689-695.	0.5	15
81	Reconsidering Adjuvant Immunotherapy for Tuberculosis. Clinical Infectious Diseases, 2005, 41, 201-208.	2.9	111
82	Survival and Replication of Clinical Mycobacterium tuberculosis Isolates in the Context of Human Innate Immunity. Infection and Immunity, 2005, 73, 2595-2601.	1.0	23
83	Anti-tuberculosis treatment and infliximab. Respiratory Medicine, 2005, 99, 1620-1622.	1.3	4
84	Granulomatous Infections Due to Tumor Necrosis Factor Blockade: Correction. Clinical Infectious Diseases, 2004, 39, 1254-1255.	2.9	215
85	Lack of Activity of Orally Administered Clofazimine against Intracellular Mycobacterium tuberculosis in Whole-Blood Culture. Antimicrobial Agents and Chemotherapy, 2004, 48, 3133-3135.	1.4	23
86	Granulomatous Infectious Diseases Associated with Tumor Necrosis Factor Antagonists. Clinical Infectious Diseases, 2004, 38, 1261-1265.	2.9	911
87	A study of the safety, immunology, virology, and microbiology of adjunctive etanercept in HIV-1-associated tuberculosis. Aids, 2004, 18, 257-264.	1.0	202
88	TB Chemotherapy. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 771-772.	2.5	8
89	Whole Blood Bactericidal Activity during Treatment of Pulmonary Tuberculosis. Journal of Infectious Diseases, 2003, 187, 270-278.	1.9	113
90	A Study of the Immunology, Virology, and Safety of Prednisone in HIV-1–Infected Subjects with CD4 Cell Counts of 200 to 700 mmⰒ3. Journal of Acquired Immune Deficiency Syndromes (1999), 2003, 32, 281-286.	0.9	46

#	Article	IF	CITATIONS
91	Bactericidal Activity in Whole Blood as a Potential Surrogate Marker of Immunity after Vaccination against Tuberculosis. Vaccine Journal, 2002, 9, 901-907.	3.2	57
92	Adult tuberculosis in the 21st century: pathogenesis, clinical features, and management. Current Opinion in Pulmonary Medicine, 2001, 7, 124-132.	1.2	11
93	Inhibition of Isoniazid-Induced Expression of Mycobacterium tuberculosis Antigen 85 in Sputum: Potential Surrogate Marker in Tuberculosis Chemotherapy Trials. Antimicrobial Agents and Chemotherapy, 2001, 45, 1302-1304.	1.4	32
94	Enhanced Production of Recombinant <i>Mycobacterium tuberculosis</i> Antigens in <i>Escherichia coli</i> by Replacement of Low-Usage Codons. Infection and Immunity, 2000, 68, 233-238.	1.0	61
95	Drug Tolerance in <i>Mycobacterium tuberculosis</i> . Antimicrobial Agents and Chemotherapy, 1999, 43, 2600-2606.	1.4	115
96	Depressed T ell Interferonâ€Î³ Responses in Pulmonary Tuberculosis: Analysis of Underlying Mechanisms and Modulation with Therapy. Journal of Infectious Diseases, 1999, 180, 2069-2073.	1.9	256
97	Induction of the Antigen 85 Complex of <i>Mycobacterium tuberculosis </i> in Sputum: A Determinant of Outcome in Pulmonary Tuberculosis Treatment. Journal of Infectious Diseases, 1998, 178, 1115-1121.	1.9	54
98	Measurement of Induced Cytokines in AIDS Clinical Trials Using Whole Blood: A Preliminary Report. Vaccine Journal, 1998, 5, 556-560.	2.6	13
99	High Incidence of Kaposi's Sarcomaâ€"Associated Herpesvirus and Epsteinâ€Barr Virus in Tumor Lesions and Peripheral Blood Mononuclear Cells from Patients with Kaposi's Sarcoma in Uganda. Journal of Infectious Diseases, 1997, 175, 947-950.	1.9	27
100	Cytokines and tuberculosis. Journal of Leukocyte Biology, 1994, 55, 676-681.	1.5	82
101	Duration of Fever during Treatment of Infective Endocarditis. Medicine (United States), 1992, 71, 52.	0.4	36
102	Probit: a computer program analysis. Journal of Immunological Methods, 1991, 145, 267-268.	0.6	15
103	T cell activation by mycobacterial antigens in inflammatory synovitis. Cellular Immunology, 1991, 133, 95-108.	1.4	23
104	Human Mycobacterium tuberculosis-reactive CD4+ T-cell clones: heterogeneity in antigen recognition, cytokine production, and cytotoxicity for mononuclear phagocytes. Infection and Immunity, 1991, 59, 2737-2743.	1.0	143
105	Dyscoordinate Expression of Tumor Necrosis Factor-alpha by Human Blood Monocytes and Alveolar Macrophages. The American Review of Respiratory Disease, 1989, 139, 1010-1016.	2.9	87