Cheolmin Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5515476/publications.pdf

Version: 2024-02-01

1684188 1474206 10 234 5 9 citations g-index h-index papers 10 10 10 328 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spatially isolated neutral excitons <i>via</i> clusters on trilayer MoS ₂ . Nanoscale, 2022, 14, 4304-4311.	5.6	2
2	Enhanced Electrical Properties of Metalâ€Organic Chemical Vapor Depositionâ€Grown MoS ₂ Thin Films through Oxygenâ€Assisted Defect Control. Advanced Electronic Materials, 2022, 8, .	5.1	4
3	Low-Temperature and High-Quality Growth of Bi ₂ O ₂ Se Layered Semiconductors <i>via</i> Cracking Metal–Organic Chemical Vapor Deposition. ACS Nano, 2021, 15, 8715-8723.	14.6	35
4	Ultrasensitive WSe ₂ /αâ€In ₂ Se ₃ NIR Photodetector Based on Ferroelectric Gating Effect. Advanced Materials Technologies, 2021, 6, 2100494.	5.8	26
5	Atomically thin heterostructure with gap-mode plasmon for overcoming trade-off between photoresponsivity and response time. Nano Research, 2021, 14, 1305-1310.	10.4	5
6	Wafer-Scale Uniform Growth of an Atomically Thin MoS ₂ Film with Controlled Layer Numbers by Metal–Organic Chemical Vapor Deposition. ACS Applied Materials & Dep	8.0	11
7	High-Performance Field-Effect Transistor and Logic Gates Based on GaS–MoS ₂ van der Waals Heterostructure. ACS Applied Materials & Interfaces, 2020, 12, 5106-5112.	8.0	17
8	Ultrasensitive Phototransistor Based on WSe ₂ –MoS ₂ van der Waals Heterojunction. Nano Letters, 2020, 20, 5741-5748.	9.1	133
9	Lowâ€Thermalâ€Budget Doping: Lowâ€Thermalâ€Budget Doping of 2D Materials in Ambient Air Exemplified by Synthesis of Boronâ€Doped Reduced Graphene Oxide (Adv. Sci. 7/2020). Advanced Science, 2020, 7, 2070039.	11.2	0
10	A feasible strategy to prepare quantum dot-incorporated carbon nanofibers as free-standing platforms. Nanoscale Advances, 2019, 1, 3948-3956.	4.6	1