
Suzanne Mary Prober

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5515016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10967-10972.	7.1	1,023
2	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	27.8	669
3	The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 2020, 7, 225.	5.3	646
4	Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters, 2015, 18, 85-95.	6.4	612
5	Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 2016, 529, 390-393.	27.8	564
6	Productivity Is a Poor Predictor of Plant Species Richness. Science, 2011, 333, 1750-1753.	12.6	463
7	Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 2014, 508, 521-525.	27.8	409
8	Grassland productivity limited by multiple nutrients. Nature Plants, 2015, 1, 15080.	9.3	403
9	Addition of multiple limiting resources reduces grassland diversity. Nature, 2016, 537, 93-96.	27.8	355
10	Climate-adjusted provenancing: a strategy for climate-resilient ecological restoration. Frontiers in Ecology and Evolution, 2015, 3, .	2.2	233
11	Restoring ecological function in temperate grassy woodlands: manipulating soil nutrients, exotic annuals and native perennial grasses through carbon supplements and spring burns. Journal of Applied Ecology, 2005, 42, 1073-1085.	4.0	201
12	Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology and Evolution, 2018, 2, 50-56.	7.8	172
13	An introduction to the Australian and New Zealand flux tower network – OzFlux. Biogeosciences, 2016, 13, 5895-5916.	3.3	159
14	Conservation of the Grassy White Box Woodlands: Relative Contributions of Size and Disturbance to Floristic Composition and Diversity of Remnants. Australian Journal of Botany, 1995, 43, 349.	0.6	154
15	Anthropogenic nitrogen deposition predicts local grassland primary production worldwide. Ecology, 2015, 96, 1459-1465.	3.2	143
16	Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.	12.8	143
17	Conservation of the Grassy White Box Woodlands: Population Genetics and Fragmentation of Eucalyptus albens. Conservation Biology, 1994, 8, 1003-1013.	4.7	141
18	Shifting the conservation paradigm: a synthesis of options for renovating nature under climate change. Ecological Monographs, 2019, 89, e01333.	5.4	130

#	Article	IF	CITATIONS
19	Combating ecosystem collapse from the tropics to the Antarctic. Global Change Biology, 2021, 27, 1692-1703.	9.5	128
20	Identifying ecological barriers to restoration in temperate grassy woodlands: soil changes associated with different degradation states. Australian Journal of Botany, 2002, 50, 699.	0.6	118
21	Plasticity of functional traits varies clinally along a rainfall gradient in <i>Eucalyptus tricarpa</i> . Plant, Cell and Environment, 2014, 37, 1440-1451.	5.7	106
22	Benefits of mycorrhizal inoculation to ecological restoration depend on plant functional type, restoration context and time. Fungal Ecology, 2019, 40, 140-149.	1.6	103
23	Determining reference conditions for management and restoration of temperate grassy woodlands: relationships among trees, topsoils and understorey flora in little-grazed remnants. Australian Journal of Botany, 2002, 50, 687.	0.6	100
24	Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecology and Evolution, 2019, 3, 400-406.	7.8	97
25	Genomeâ€wide scans detect adaptation to aridity in a widespread forest tree species. Molecular Ecology, 2014, 23, 2500-2513.	3.9	95
26	Australian Aboriginal Peoples' Seasonal Knowledge: a Potential Basis for Shared Understanding in Environmental Management. Ecology and Society, 2011, 16, .	2.3	91
27	Facilitating adaptation of biodiversity to climate change: a conceptual framework applied to the world's largest Mediterranean-climate woodland. Climatic Change, 2012, 110, 227-248.	3.6	89
28	Restoring Australia's temperate grasslands and grassy woodlands: integrating function and diversity. Ecological Management and Restoration, 2005, 6, 16-27.	1.5	88
29	Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecology Letters, 2011, 14, 274-281.	6.4	88
30	Native forests and climate change: Lessons from eucalypts. Forest Ecology and Management, 2015, 347, 18-29.	3.2	82
31	Sensitivity of global soil carbon stocks to combined nutrient enrichment. Ecology Letters, 2019, 22, 936-945.	6.4	75
32	Restoration of Themeda australis swards suppresses soil nitrate and enhances ecological resistance to invasion by exotic annuals. Biological Invasions, 2009, 11, 171-181.	2.4	74
33	Contrasting changes in vegetation structure and diversity with time since fire in two Australian Mediterraneanâ€climate plant communities. Austral Ecology, 2012, 37, 164-174.	1.5	74
34	Evidence of genomic adaptation to climate in <i>Eucalyptus microcarpa</i> : Implications for adaptive potential to projected climate change. Molecular Ecology, 2017, 26, 6002-6020.	3.9	74
35	AusTraits, a curated plant trait database for the Australian flora. Scientific Data, 2021, 8, 254.	5.3	73
36	Symbiosis limits establishment of legumes outside their native range at a global scale. Nature Communications, 2017, 8, 14790.	12.8	71

#	Article	IF	CITATIONS
37	Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?. Global Change Biology, 2013, 19, 3677-3687.	9.5	70
38	The Australian SuperSite Network: A continental, long-term terrestrial ecosystem observatory. Science of the Total Environment, 2016, 568, 1263-1274.	8.0	70
39	The big ecological questions inhibiting effective environmental management in Australia. Austral Ecology, 2009, 34, 1-9.	1.5	66
40	Mustering the power of ecosystems for adaptation to climate change. Environmental Science and Policy, 2019, 92, 87-97.	4.9	65
41	Enhancing biodiversity persistence in intensively used agricultural landscapes: A synthesis of 30 years of research in the Western Australian wheatbelt. Agriculture, Ecosystems and Environment, 2009, 132, 173-191.	5.3	64
42	Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology, 2021, 102, e03218.	3.2	62
43	Under the radar: mitigating enigmatic ecological impacts. Trends in Ecology and Evolution, 2014, 29, 635-644.	8.7	61
44	Floristic diversity in fireâ€sensitive eucalypt woodlands shows a â€~U'â€shaped relationship with time since fire. Journal of Applied Ecology, 2013, 50, 1187-1196.	4.0	60
45	Out of the shadows: multiple nutrient limitations drive relationships among biomass, light and plant diversity. Functional Ecology, 2017, 31, 1839-1846.	3.6	55
46	Examining the evidence for decoupling between photosynthesis and transpiration during heat extremes. Biogeosciences, 2019, 16, 903-916.	3.3	54
47	Conservation of the Grassy White Box Woodlands: Rangewide Floristic Variation and Implications for Reserve Design. Australian Journal of Botany, 1996, 44, 57.	0.6	51
48	Relationships among soil fertility, native plant diversity and exotic plant abundance inform restoration of forbâ€rich eucalypt woodlands. Diversity and Distributions, 2012, 18, 795-807.	4.1	49
49	Carbon uptake and water use in woodlands and forests in southern Australia during an extreme heat wave event in the "Angry Summer―of 2012/2013. Biogeosciences, 2016, 13, 5947-5964.	3.3	48
50	A continentalâ€scale assessment of variability in leaf traits: Within species, across sites and between seasons. Functional Ecology, 2018, 32, 1492-1506.	3.6	48
51	Informing climate adaptation pathways in multi-use woodland landscapes using the values-rules-knowledge framework. Agriculture, Ecosystems and Environment, 2017, 241, 39-53.	5.3	44
52	Biodiversity and agriculture: Production frontiers as a framework for exploring trade-offs and evaluating policy. Environmental Science and Policy, 2012, 23, 85-94.	4.9	43
53	Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Global Change Biology, 2020, 26, 2060-2071.	9.5	43
54	Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology, 2018, 99, 822-831.	3.2	42

#	Article	IF	CITATIONS
55	Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	40
56	Restoration treatments enhance early establishment of native forbs in a degraded temperate grassy woodland. Australian Journal of Botany, 2007, 55, 818.	0.6	40
57	Fire frequency regulates tussock grass composition, structure and resilience in endangered temperate woodlands. Austral Ecology, 2007, 32, 808-824.	1.5	39
58	Enhancing soil biophysical condition for climate-resilient restoration in mesic woodlands. Ecological Engineering, 2014, 71, 246-255.	3.6	39
59	Larger plants promote a greater diversity of symbiotic nitrogenâ€fixing soil bacteria associated with an Australian endemic legume. Journal of Ecology, 2019, 107, 977-991.	4.0	38
60	Climate adaptation and ecological restoration in eucalypts. Proceedings of the Royal Society of Victoria, 2016, 128, 40.	0.4	37
61	Adaptation services and pathways for the management of temperate montane forests under transformational climate change. Climatic Change, 2016, 138, 267-282.	3.6	37
62	The Conservation Genetics of Eucalyptus paliformis L. Johnson et Blaxell and E. parvifolia Cambage, Two Rare Species From South-Eastern Australia. Australian Journal of Botany, 1990, 38, 79.	0.6	35
63	Combining community-level spatial modelling and expert knowledge to inform climate adaptation in temperate grassy eucalypt woodlands and related grasslands. Biodiversity and Conservation, 2012, 21, 1627-1650.	2.6	34
64	Genome-wide scans reveal cryptic population structure in a dry-adapted eucalypt. Tree Genetics and Genomes, 2015, 11, 1.	1.6	34
65	TERN, Australia's land observatory: addressing the global challenge of forecasting ecosystem responses to climate variability and change. Environmental Research Letters, 2019, 14, 095004.	5.2	34
66	Belowground Biomass Response to Nutrient Enrichment Depends on Light Limitation Across Globally Distributed Grasslands. Ecosystems, 2019, 22, 1466-1477.	3.4	34
67	Multi-century changes in vegetation structure and fuel availability in fire-sensitive eucalypt woodlands. Forest Ecology and Management, 2013, 310, 102-109.	3.2	33
68	A phylogenetic and allozyme approach to understanding rarity in three ?green ash? eucalypts (Myrtaceae). Plant Systematics and Evolution, 1990, 172, 99-118.	0.9	32
69	Anthropogenicâ€based regionalâ€scale factors most consistently explain plotâ€level exotic diversity in grasslands. Global Ecology and Biogeography, 2014, 23, 802-810.	5.8	32
70	Evidence for adaptation and acclimation in a widespread eucalypt of semi-arid Australia. Biological Journal of the Linnean Society, 2017, 121, 484-500.	1.6	32
71	Implications of high species turnover on the south-western Australian sandplains. PLoS ONE, 2017, 12, e0172977.	2.5	31
72	Response to Comments on "Productivity Is a Poor Predictor of Plant Species Richness― Science, 2012, 335, 1441-1441.	12.6	30

#	Article	IF	CITATIONS
73	Changes in plant species and functional composition with time since fire in two mediterranean climate plant communities. Journal of Vegetation Science, 2012, 23, 1071-1081.	2.2	30
74	Maximizing retention of native biodiversity in Australian agricultural landscapes—The 10:20:40:30 guidelines. Agriculture, Ecosystems and Environment, 2013, 166, 35-45.	5.3	30
75	Bioclimatic transect networks: Powerful observatories of ecological change. Ecology and Evolution, 2017, 7, 4607-4619.	1.9	29
76	Conservation of the Grassy White Box Woodlands: Effects of Remnant Population Size on Genetic Diversity in the Allotetraploid Herb Microseris lanceolata. Conservation Biology, 1998, 12, 1279-1290.	4.7	29
77	CLADISTIC AND BIOGEOGRAPHIC ANALYSIS OF THE "BLUE ASH' EUCALYPTS. Cladistics, 1992, 8, 103-124.	3.3	28
78	How well do revegetation plantings capture genetic diversity?. Biology Letters, 2019, 15, 20190460.	2.3	28
79	Frequent fire promotes diversity and cover of biological soil crusts in a derived temperate grassland. Oecologia, 2009, 159, 827-838.	2.0	27
80	Regional Contingencies in the Relationship between Aboveground Biomass and Litter in the World's Grasslands. PLoS ONE, 2013, 8, e54988.	2.5	27
81	Genomic Scans across Three Eucalypts Suggest that Adaptation to Aridity is a Genome-Wide Phenomenon. Genome Biology and Evolution, 2017, 9, 253-265.	2.5	27
82	Thermal acclimation of leaf photosynthetic traits in an evergreen woodland, consistent with the coordination hypothesis. Biogeosciences, 2018, 15, 3461-3474.	3.3	27
83	Microbial processing of plant remains is coâ€limited by multiple nutrients in global grasslands. Global Change Biology, 2020, 26, 4572-4582.	9.5	27
84	After the fence: vegetation and topsoil condition in grazed, fenced and benchmark eucalypt woodlands of fragmented agricultural landscapes. Australian Journal of Botany, 2011, 59, 369.	0.6	27
85	Estimating fire interval bounds using vital attributes: implications of uncertainty and among-population variability. , 2013, 23, 924-935.		26
86	Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties. Global Change Biology, 2020, 26, 7173-7185.	9.5	25
87	Nutrient enrichment increases invertebrate herbivory and pathogen damage in grasslands. Journal of Ecology, 2022, 110, 327-339.	4.0	25
88	The Grassy Box Woodlands Conservation Management Network: Picking up the pieces in fragmented woodlands. Ecological Management and Restoration, 2001, 2, 179-188.	1.5	24
89	Management legacies shape decadalâ€scale responses of plant diversity to experimental disturbance regimes in fragmented grassy woodlands. Journal of Applied Ecology, 2013, 50, 376-386.	4.0	24
90	Estimating the time since fire of long-unburnt Eucalyptus salubris (Myrtaceae) stands in the Great Western Woodlands. Australian Journal of Botany, 2013, 61, 11.	0.6	24

#	Article	IF	CITATIONS
91	Ngadju kala: Australian Aboriginal fire knowledge in the Great Western Woodlands. Austral Ecology, 2016, 41, 716-732.	1.5	24
92	Resource heterogeneity and persistence of exotic annuals in long-ungrazed Mediterranean-climate woodlands. Biological Invasions, 2011, 13, 2009-2022.	2.4	23
93	Landscape genomics reveals altered genome wide diversity within revegetated stands of <i>Eucalyptus microcarpa</i> (Grey Box). New Phytologist, 2016, 212, 992-1006.	7.3	23
94	Plastic Traits of an Exotic Grass Contribute to Its Abundance but Are Not Always Favourable. PLoS ONE, 2012, 7, e35870.	2.5	23
95	Habitat peculiarity as a cause of rarity in Eucalyptus paliformis. Austral Ecology, 1991, 16, 189-205.	1.5	22
96	Effects of fire frequency and mowing on a temperate, derived grassland soil in south-eastern Australia. International Journal of Wildland Fire, 2008, 17, 586.	2.4	21
97	Multi-century dynamics of ant communities following fire in Mediterranean-climate woodlands: Are changes congruent with vegetation succession?. Forest Ecology and Management, 2015, 342, 30-38.	3.2	21
98	A conceptual model of vegetation dynamics for the unique obligateâ€seeder eucalypt woodlands of southâ€western Australia. Austral Ecology, 2018, 43, 681-695.	1.5	21
99	Vehicle tracks are predator highways in intact landscapes. Biological Conservation, 2018, 228, 281-290.	4.1	20
100	Multi-century periods since fire in an intact woodland landscape favour bird species declining in an adjacent agricultural region. Biological Conservation, 2019, 230, 82-90.	4.1	20
101	Global metaâ€∎nalysis reveals incomplete recovery of soil conditions and invertebrate assemblages after ecological restoration in agricultural landscapes. Journal of Applied Ecology, 2022, 59, 358-372.	4.0	20
102	Land surface phenology retrievals for arid and semi-arid ecosystems. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 185, 129-145.	11.1	20
103	The utility of isozymes in the systematics of some Australian tree groups. Australian Systematic Botany, 1990, 3, 47.	0.9	18
104	Fire does not facilitate invasion by alien annual grasses in an infertile Australian agricultural landscape. Biological Invasions, 2011, 13, 533-544.	2.4	18
105	Species origin affects the rate of response to interâ€annual growing season precipitation and nutrient addition in four Australian native grasslands. Journal of Vegetation Science, 2016, 27, 1164-1176.	2.2	18
106	Linear infrastructure impacts on landscape hydrology. Journal of Environmental Management, 2018, 206, 446-457.	7.8	18
107	Immersive landscapes: modelling ecosystem reference conditions in virtual reality. Landscape Ecology, 2022, 37, 1293-1309.	4.2	18
108	Effectiveness of repeated autumn and spring fires for understorey restoration in weedâ€invaded temperate eucalypt woodlands. Applied Vegetation Science, 2009, 12, 440-450.	1.9	17

#	Article	IF	CITATIONS
109	Repeated disturbance through chaining and burning differentially affects recruitment among plant functional types in fire-prone heathlands. International Journal of Wildland Fire, 2010, 19, 52.	2.4	17
110	Spring burns control exotic annual grasses in a temperate grassy woodland. Ecological Management and Restoration, 2004, 5, 131-134.	1.5	16
111	Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2016, 351, 457-457.	12.6	16
112	Environmental influences on the distribution of the rare Eucalyptus paliformis and the common E. fraxinoides. Austral Ecology, 1992, 17, 51-65.	1.5	15
113	Climate change: a cause for new biodiversity conservation objectives but let's not throw the baby out with the bathwater. Ecological Management and Restoration, 2011, 12, 2-3.	1.5	15
114	Application and validation of visual fuel hazard assessments in dry Mediterranean-climate woodlands. International Journal of Wildland Fire, 2014, 23, 385.	2.4	14
115	Nature conservation and ecological restoration in a changing climate: what are we aiming for?. Rangeland Journal, 2017, 39, 477.	0.9	14
116	Fireâ€mediated habitat change regulates woodland bird species and functional group occurrence. Ecological Applications, 2019, 29, e01997.	3.8	14
117	Phylogenomics shows lignotuber state is taxonomically informative in closely related eucalypts. Molecular Phylogenetics and Evolution, 2019, 135, 236-248.	2.7	14
118	Bridge to the future: Important lessons from 20Âyears of ecosystem observations made by the OzFlux network. Global Change Biology, 2022, 28, 3489-3514.	9.5	14
119	Conservation of the Grassy White Box Woodlands: Effects of Remnant Population Size on Genetic Diversity in the Allotetraploid Herb <i>Microseris lanceolata</i> . Conservation Biology, 1998, 12, 1279-1290.	4.7	12
120	Towards climate-resilient restoration in mesic eucalypt woodlands: characterizing topsoil biophysical condition in different degradation states. Plant and Soil, 2014, 383, 231-244.	3.7	12
121	Nutrient versus seed bank depletion approaches to controlling exotic annuals in threatened Box Gum woodlands. Austral Ecology, 2016, 41, 40-52.	1.5	12
122	Spatial turnover of multiple ecosystem functions is more associated with plant than soil microbial $\hat{l}^2 \hat{a} \in d$ iversity. Ecosphere, 2021, 12, e03644.	2.2	12
123	Continentalâ€scale syntheses ofÂAustralian pyromes – misclassification of southâ€western eucalypt woodlands misinforms management. Journal of Biogeography, 2016, 43, 858-861.	3.0	11
124	Potential benefits of biodiversity to Australian vegetation projects registered with the Emissions Reduction Fund—is there a carbonâ€biodiversity tradeâ€off?. Ecological Management and Restoration, 2020, 21, 165-172.	1.5	11
125	Competing drivers lead to non-linear native–exotic relationships in endangered temperate grassy woodlands. Biological Invasions, 2016, 18, 3001-3014.	2.4	10
126	Establishment of native grasses and their impact on exotic annuals in degraded box gum woodlands. Austral Ecology, 2017, 42, 632-642.	1.5	10

#	Article	IF	CITATIONS
127	Lines in the sand: quantifying the cumulative development footprint in the world's largest remaining temperate woodland. Landscape Ecology, 2017, 32, 1969-1986.	4.2	10
128	Using restoration as an experimental framework to test provenancing strategies and climate adaptability. Ecological Management and Restoration, 2017, 18, 205-208.	1.5	9
129	Recovery of woody but not herbaceous native flora 10 years post oldâ€field restoration. Ecological Solutions and Evidence, 2021, 2, e12097.	2.0	8
130	Combining asset- and species-led alien plant management priorities in the world's most intact Mediterranean-climate landscape. Biodiversity and Conservation, 2015, 24, 2789-2807.	2.6	7
131	Preface: OzFlux: a network for the study of ecosystem carbon and water dynamics across Australia and New Zealand. Biogeosciences, 2018, 15, 349-352.	3.3	7
132	Recent climate-driven ecological change across a continent as perceived through local ecological knowledge. PLoS ONE, 2019, 14, e0224625.	2.5	7
133	<scp>P</scp> is for persistence: Soil phosphorus remains elevated for more than a decade after old field restoration. Ecological Applications, 2022, 32, e2547.	3.8	7
134	Combined Analyses of Phenotype, Genotype and Climate Implicate Local Adaptation as a Driver of Diversity in Eucalyptus microcarpa (Grey Box). Forests, 2020, 11, 495.	2.1	6
135	Leaf Economic and Hydraulic Traits Signal Disparate Climate Adaptation Patterns in Two Co-Occurring Woodland Eucalypts. Plants, 2022, 11, 1846.	3.5	6
136	Soil nitrate promotes growth of an exotic grass more than native forbs. Ecological Management and Restoration, 2008, 9, 60-63.	1.5	5
137	Spatial structuring of arbuscular mycorrhizal communities in benchmark and modified temperate eucalypt woodlands. Mycorrhiza, 2015, 25, 41-54.	2.8	5
138	A plant traits approach to managing legacy species during restoration transitions in temperate eucalypt woodlands. Restoration Ecology, 2016, 24, 354-363.	2.9	5
139	Better planning outcomes require adequate data and ecological understanding to be successful and credible: A reply to Evans et al., 2015. Biological Conservation, 2016, 200, 240-241.	4.1	4
140	Repeatability and Validity of Phenotypic Trait Measurements in Birds. Evolutionary Biology, 2021, 48, 100-114.	1.1	4
141	Viola silicestris, a new species in Viola section Erpetion from Australia. Telopea, 2006, 11, 99-104.	0.4	4
142	Directional Selection on Tree Seedling Traits Driven by Experimental Drought Differs Between Mesic and Dry Populations. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	4
143	In the Hot Seat: Behavioral Change and Old-Growth Trees Underpin an Australian Songbird's Response to Extreme Heat. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	4
144	Ecological control of exotic annuals in native C3 grass swards. Austral Ecology, 2018, 43, 926-936.	1.5	3

#	Article	IF	CITATIONS
145	Novel modelâ€based clustering reveals ecologically differentiated bacterial genomes across a large climate gradient. Ecology Letters, 2019, 22, 2077-2086.	6.4	3
146	Time since fire and prior fire interval shape woody debris dynamics in obligateâ€seeder woodlands. Ecosphere, 2019, 10, e02927.	2.2	3
147	Keystone Perennial Grassland Species Control Soil Nitrogen Flows. Ecosystems, 2021, 24, 1500-1515.	3.4	3
148	Mapping risk to plant populations from short fire intervals via relationships between maturation period and environmental productivity. Plant Ecology, 0, , 1.	1.6	3
149	Eucalyptus elaeophloia: a new species from the Nunniong Plateau, Victoria. Australian Systematic Botany, 1990, 3, 275.	0.9	2
150	Using a Multi-Century Post-Fire Chronosequence to Develop Criteria to Distinguish Prior and Bowman's (2020) Post-Fire Obligate Coloniser and Fire-Intolerant Flora. Fire, 2020, 3, 48.	2.8	2
151	Oldâ€field restoration improves habitat for ants in a semiâ€arid landscape. Restoration Ecology, 2022, 30, e13605.	2.9	2
152	Chaining and Burning Modifies Vegetation Structure, Fuel, and Post-Disturbance Sprouting Capacity. Rangeland Ecology and Management, 2010, 63, 588-592.	2.3	1
153	Piecing together our woodlands - Interview with Suzanne Prober. Ecological Management and Restoration, 2018, 19, 180-188.	1.5	Ο
154	Abiotic and biotic responses to woody debris additions in restored old fields in a multiâ€site <scp>Beforeâ€Afterâ€Controlâ€Impact</scp> experiment. Ecology and Evolution, 2022, 12, .	1.9	0