Jason Carere

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5514321/publications.pdf Version: 2024-02-01

LASON CADEDE

#	Article	IF	CITATIONS
1	Formation of glutathione patulin conjugates associated with yeast fermentation contributes to patulin reduction. Food Control, 2021, 123, 107334.	2.8	12
2	A Novel PilR/PilS Two-Component System Regulates Necrotic Enteritis Pilus Production in Clostridium perfringens. Journal of Bacteriology, 2021, 203, e0009621.	1.0	1
3	The enzymatic detoxification of the mycotoxin deoxynivalenol: identification of DepA from the DON epimerization pathway. Microbial Biotechnology, 2018, 11, 1106-1111.	2.0	73
4	The cereal pathogen <i>Fusarium pseudograminearum</i> produces a new class of active cytokinins during infection. Molecular Plant Pathology, 2018, 19, 1140-1154.	2.0	37
5	Patulin in Apples and Apple-Based Food Products: The Burdens and the Mitigation Strategies. Toxins, 2018, 10, 475.	1.5	99
6	BdACT2a encodes an agmatine coumaroyl transferase required for pathogen defence in Brachypodium distachyon. Physiological and Molecular Plant Pathology, 2018, 104, 69-76.	1.3	5
7	The Identification of DepB: An Enzyme Responsible for the Final Detoxification Step in the Deoxynivalenol Epimerization Pathway in Devosia mutans 17-2-E-8. Frontiers in Microbiology, 2018, 9, 1573.	1.5	49
8	The Fusarium crown rot pathogen <i>Fusarium pseudograminearum</i> triggers a suite of transcriptional and metabolic changes in bread wheat (<i>Triticum aestivum</i> L.). Annals of Botany, 2017, 119, mcw207.	1.4	52
9	A tomatinase-like enzyme acts as a virulence factor in the wheat pathogen Fusarium graminearum. Fungal Genetics and Biology, 2017, 100, 33-41.	0.9	10
10	Transcriptome analysis of Brachypodium during fungal pathogen infection reveals both shared and distinct defense responses with wheat. Scientific Reports, 2017, 7, 17212.	1.6	27
11	Enzymeâ€driven metabolomic screening: a proofâ€ofâ€principle method for discovery of plant defence compounds targeted by pathogens. New Phytologist, 2016, 212, 770-779.	3.5	10
12	The Fdb3 transcription factor of the Fusarium Detoxification of Benzoxazolinone gene cluster is required for MBOA but not BOA degradation in Fusarium pseudograminearum. Fungal Genetics and Biology, 2016, 88, 44-53.	0.9	8
13	A Î ³ -lactamase from cereal infecting Fusarium spp. catalyses the first step in the degradation of the benzoxazolinone class of phytoalexins. Fungal Genetics and Biology, 2015, 83, 1-9.	0.9	23
14	Characterization of an Aldolase–Dehydrogenase Complex from the Cholesterol Degradation Pathway of <i>Mycobacterium tuberculosis</i> . Biochemistry, 2013, 52, 3502-3511.	1.2	33
15	Protein–Protein Interactions and Substrate Channeling in Orthologous and Chimeric Aldolase–Dehydrogenase Complexes. Biochemistry, 2012, 51, 1942-1952.	1.2	19
16	Substrate Specificity, Substrate Channeling, and Allostery in BphJ: An Acylating Aldehyde Dehydrogenase Associated with the Pyruvate Aldolase BphI. Biochemistry, 2012, 51, 4558-4567.	1.2	13
17	Investigating the Molecular Determinants for Substrate Channeling in Bphl–BphJ, an Aldolase–Dehydrogenase Complex from the Polychlorinated Biphenyls Degradation Pathway. Biochemistry, 2011, 50, 8407-8416.	1.2	24
18	Probing the Molecular Basis of Substrate Specificity, Stereospecificity, and Catalysis in the Class II Pyruvate Aldolase, BphI. Biochemistry, 2011, 50, 3559-3569.	1.2	25

#	Article	IF	CITATIONS
19	Characterization of an Aldolaseâ^'Dehydrogenase Complex That Exhibits Substrate Channeling in the Polychlorinated Biphenyls Degradation Pathway. Biochemistry, 2009, 48, 6551-6558.	1.2	38