
Nadeschda Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5514137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of Neuronal Guidance Fibers for Stimulating Electrodes: Basic Construction and Delivery of a Growth Factor. Frontiers in Bioengineering and Biotechnology, 2022, 10, 776890.	2.0	2
2	Large refractive index changes in ZIF-8 thin films of optical quality. RSC Advances, 2022, 12, 5807-5815.	1.7	24
3	Boosting Dimethylamine Formation Selectivity in a Membrane Reactor by In Situ Water Removal. Industrial & Engineering Chemistry Research, 2022, 61, 307-316.	1.8	3
4	Mindfulness-Based Cognitive Therapy as Migraine Intervention: a Randomized Waitlist Controlled Trial. International Journal of Behavioral Medicine, 2022, 29, 597-609.	0.8	3
5	Planar Polymer Optical Waveguide with Metalâ€Organic Framework Coating for Carbon Dioxide Sensing. Advanced Materials Technologies, 2022, 7, .	3.0	10
6	Thickness-dependent gap energies in thin layers of Hf Te ₅ . 2D Materials, 2021, 8, 035029.	2.0	0
7	Spatial Extent of Fluorescence Quenching in Mixed Semiconductor–Metal Nanoparticle Gel Networks. Advanced Functional Materials, 2021, 31, 2101628.	7.8	14
8	Aerogelation of Polymer-Coated Photoluminescent, Plasmonic, and Magnetic Nanoparticles for Biosensing Applications. ACS Applied Nano Materials, 2021, 4, 6678-6688.	2.4	13
9	Chemically induced hypoxia by dimethyloxalylglycine (DMOG)-loaded nanoporous silica nanoparticles supports endothelial tube formation by sustained VEGF release from adipose tissue-derived stem cells. International Journal of Energy Production and Management, 2021, 8, rbab039.	1.9	13
10	Electrical and optical properties linked to laser damage behavior in conductive thin film materials. Optical Materials Express, 2021, 11, 35.	1.6	8
11	Nanoporous hybrid core–shell nanoparticles for sequential release. Journal of Materials Chemistry B, 2020, 8, 776-786.	2.9	13
12	Implant-based direction of magnetic nanoporous silica nanoparticles – influence of macrophage depletion and infection. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 30, 102289.	1.7	2
13	Synthetic antiâ€endotoxin peptides interfere with Gramâ€positive and Gramâ€negative bacteria, their adhesion and biofilm formation on titanium. Journal of Applied Microbiology, 2020, 129, 1272-1286.	1.4	8
14	Reversible cation exchange on macroscopic CdSe/CdS and CdS nanorod based gel networks. Nanoscale, 2020, 12, 5038-5047.	2.8	13
15	Biodistribution, biocompatibility and targeted accumulation of magnetic nanoporous silica nanoparticles as drug carrier in orthopedics. Journal of Nanobiotechnology, 2020, 18, 14.	4.2	28
16	Inside/Outside: Post‣ynthetic Modification of the Zrâ€Benzophenonedicarboxylate Metal–Organic Framework. Chemistry - A European Journal, 2020, 26, 2222-2232.	1.7	10
17	Versatile route to core–shell reinforced network nanostructures. Nanoscale, 2019, 11, 15270-15278.	2.8	8
18	Role of Structural Defects in the Adsorption and Separation of C3 Hydrocarbons in Zr-Fumarate-MOF (MOF-801). Chemistry of Materials, 2019, 31, 8413-8423.	3.2	87

#	Article	IF	CITATIONS
19	Electrically Conducting Nanocomposites of Carbon Nanotubes and Metalâ€Organic Frameworks with Strong Interactions between the two Components. ChemNanoMat, 2019, 5, 1159-1169.	1.5	21
20	Direct grafting-from of PEDOT from a photoreactive Zr-based MOF – a novel route to electrically conductive composite materials. Chemical Communications, 2019, 55, 3367-3370.	2.2	29
21	Macrophage entrapped silica coated superparamagnetic iron oxide particles for controlled drug release in a 3D cancer model. Journal of Controlled Release, 2019, 294, 327-336.	4.8	40
22	Postsynthetic Modification of Metal–Organic Frameworks through Nitrile Oxide–Alkyne Cycloaddition. Inorganic Chemistry, 2018, 57, 3348-3359.	1.9	23
23	Attachment of nanoparticulate drug-release systems on poly(Îμ-caprolactone) nanofibers via a graftpolymer as interlayer. Colloids and Surfaces B: Biointerfaces, 2018, 163, 309-320.	2.5	29
24	In vitro and in vivo accumulation of magnetic nanoporous silica nanoparticles on implant materials with different magnetic properties. Journal of Nanobiotechnology, 2018, 16, 96.	4.2	14
25	Graphene-like metal–organic frameworks: morphology control, optimization of thin film electrical conductivity and fast sensing applications. CrystEngComm, 2018, 20, 6458-6471.	1.3	70
26	Delamination and Photochemical Modification of a Novel Twoâ€Dimensional Zrâ€Based Metal–Organic Frameworks. Chemistry - A European Journal, 2018, 24, 12848-12855.	1.7	12
27	Long-term delivery of brain-derived neurotrophic factor (BDNF) from nanoporous silica nanoparticles improves the survival of spiral ganglion neurons in vitro. PLoS ONE, 2018, 13, e0194778.	1.1	58
28	Phosphate conversion coating reduces the degradation rate and suppresses side effects of metallic magnesium implants in an animal model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 1622-1635.	1.6	14
29	Improved surgical procedure using intraoperative navigation for the implantation of the SPG microstimulator in patients with chronic cluster headache. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 2119-2128.	1.7	11
30	Azobenzene Guest Molecules as Light-Switchable CO ₂ Valves in an Ultrathin UiO-67 Membrane. Chemistry of Materials, 2017, 29, 3111-3117.	3.2	103
31	Expanding the Group of Porous Interpenetrated Zr-Organic Frameworks (PIZOFs) with Linkers of Different Lengths. Inorganic Chemistry, 2017, 56, 748-761.	1.9	53
32	Porous Aerogels from Shape-Controlled Metal Nanoparticles Directly from Nonpolar Colloidal Solution. Chemistry of Materials, 2017, 29, 9208-9217.	3.2	62
33	Validating Metalâ€Organic Framework Nanoparticles for Their Nanosafety in Diverse Biomedical Applications. Advanced Healthcare Materials, 2017, 6, 1600818.	3.9	137
34	Validation of the COMPASS force field for complex inorganic–organic hybrid polymers. Journal of Sol-Gel Science and Technology, 2017, 81, 195-204.	1.1	31
35	An oral multispecies biofilm model for high content screening applications. PLoS ONE, 2017, 12, e0173973.	1.1	42
36	Coatings of Different Carbon Nanotubes on Platinum Electrodes for Neuronal Devices: Preparation, Cytocompatibility and Interaction with Spiral Ganglion Cells. PLoS ONE, 2016, 11, e0158571.	1.1	14

#	Article	IF	CITATIONS
37	Catalytic graphitization of ordered mesoporous carbon CMKâ€3 with iron oxide catalysts: Evaluation of different synthesis pathways. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1395-1402.	0.8	17
38	Versatile Aerogel Fabrication by Freezing and Subsequent Freezeâ€Drying of Colloidal Nanoparticle Solutions. Angewandte Chemie - International Edition, 2016, 55, 1200-1203.	7.2	103
39	Controlled transformations in transparent conducting films fabricated from highly stable hydrophilic dispersions of SWNTs through surface charge manipulation and acid treatment conditions. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1447-1455.	0.8	2
40	pH-responsive release of chlorhexidine from modified nanoporous silica nanoparticles for dental applications. BioNanoMaterials, 2016, 17, 59-72.	1.4	34
41	Degradation rates and products of pure magnesium exposed to different aqueous media under physiological conditions. BioNanoMaterials, 2016, 17, .	1.4	26
42	Photoluminescent Aerogels from Quantum Wells. Chemistry of Materials, 2016, 28, 2089-2099.	3.2	46
43	Magnesiumâ€containing layered double hydroxides as orthopaedic implant coating materials—An <i>in vitro</i> and <i>in vivo</i> study. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 525-531.	1.6	27
44	Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition. Beilstein Journal of Nanotechnology, 2015, 6, 799-808.	1.5	2
45	Nanoporous silica nanoparticles as biomaterials: evaluation of different strategies for the functionalization with polysialic acid by step-by-step cytocompatibility testing. Journal of Materials Science: Materials in Medicine, 2015, 26, 125.	1.7	29
46	Controlled drug release from antibioticâ€loaded layered double hydroxide coatings on porous titanium implants in a mouse model. Journal of Biomedical Materials Research - Part A, 2015, 103, 2141-2149.	2.1	43
47	Biocompatibility of silver containing silica films on Bioverit® II middle ear prostheses in rabbits. Journal of Biomaterials Applications, 2015, 30, 17-29.	1.2	9
48	A water-born Zr-based porous coordination polymer: Modulated synthesis of Zr-fumarate MOF. Microporous and Mesoporous Materials, 2015, 203, 186-194.	2.2	95
49	Nanoporous silica nanoparticles with spherical and anisotropic shape as fillers in dental composite materials. BioNanoMaterials, 2014, 15, .	1.4	13
50	Insight into the mechanism of modulated syntheses: <i>in situ</i> synchrotron diffraction studies on the formation of Zr-fumarate MOF. CrystEngComm, 2014, 16, 9198-9207.	1.3	118
51	<i>InÂvivo</i> testing of a bioabsorbable magnesium alloy serving as total ossicular replacement prostheses. Journal of Biomaterials Applications, 2014, 28, 688-696.	1.2	10
52	Layered double hydroxides as efficient drug delivery system of ciprofloxacin in the middle ear: an animal study in rabbits. Journal of Materials Science: Materials in Medicine, 2013, 24, 129-136.	1.7	43
53	Efficacy of nanoporous silica coatings on middle ear prostheses as a delivery system for antibiotics: An animal study in rabbits. Acta Biomaterialia, 2013, 9, 4815-4825.	4.1	34
54	Mesoporous silica films as a novel biomaterial: applications in the middle ear. Chemical Society Reviews, 2013, 42, 3847.	18.7	70

#	Article	IF	CITATIONS
55	BMP2-loaded nanoporous silica nanoparticles promote osteogenic differentiation of human mesenchymal stem cells. RSC Advances, 2013, 3, 24222.	1.7	50
56	Nanoporous Silica Coatings as a Drug Delivery System for Ciprofloxacin. Otology and Neurotology, 2013, 34, 1138-1145.	0.7	10
57	The Phosphate Source Influences Gene Expression and Quality of Mineralization during In Vitro Osteogenic Differentiation of Human Mesenchymal Stem Cells. PLoS ONE, 2013, 8, e65943.	1.1	51
58	Towards an atomistic model for ORMOCER®-I: application of forcefield methods. Journal of Sol-Gel Science and Technology, 2012, 63, 356-365.	1.1	12
59	Evolution of the Morphologies of Zinc Oxide Mesocrystals Under the Influence of Natural Polysaccharides. Crystal Growth and Design, 2012, 12, 3066-3075.	1.4	41
60	Postâ€Synthetic Modification of Zrâ€Metal–Organic Frameworks through Cycloaddition Reactions. Chemistry - A European Journal, 2012, 18, 6979-6985.	1.7	53
61	Fabrication and characterization of biocompatible nacre-like structures from α-zirconium hydrogen phosphate hydrate and chitosan. Journal of Colloid and Interface Science, 2012, 367, 74-82.	5.0	13
62	Modulated synthesis of Zr-fumarate MOF. Microporous and Mesoporous Materials, 2012, 152, 64-70.	2.2	334
63	A Novel Zrâ€Based Porous Coordination Polymer Containing Azobenzenedicarboxylate as a Linker. European Journal of Inorganic Chemistry, 2012, 2012, 790-796.	1.0	84
64	Beyond the Limits of X-ray Powder Diffraction: Description of the Nonperiodic Subnetworks in Aluminophosphate-Cloverite by NMR Crystallography. Chemistry of Materials, 2011, 23, 4799-4809.	3.2	53
65	Mesoporous silica coatings for controlled release of the antibiotic ciprofloxacin from implants. Journal of Materials Chemistry, 2011, 21, 752-760.	6.7	62
66	Mechanical characterization of nacre as an ideal-model for innovative new endoprosthesis materials. Archives of Orthopaedic and Trauma Surgery, 2011, 131, 191-196.	1.3	15
67	Modulated Synthesis of Zrâ€Based Metal–Organic Frameworks: From Nano to Single Crystals. Chemistry - A European Journal, 2011, 17, 6643-6651.	1.7	1,320
68	Porous Interpenetrated Zirconium–Organic Frameworks (PIZOFs): A Chemically Versatile Family of Metal–Organic Frameworks. Chemistry - A European Journal, 2011, 17, 9320-9325.	1.7	170
69	Amino-modified silica surfaces efficiently immobilize bone morphogenetic protein 2 (BMP2) for medical purposes. Acta Biomaterialia, 2011, 7, 1772-1779.	4.1	42
70	Polysialic acid immobilized on silanized glass surfaces: a test case for its use as a biomaterial for nerve regeneration. Journal of Materials Science: Materials in Medicine, 2010, 21, 1371-1378.	1.7	15
71	Immobilization of alkaline phosphatase on modified silica coatings. Microporous and Mesoporous Materials, 2010, 131, 51-57.	2.2	27
72	Experimental middle ear surgery in rabbits: a new approach for reconstructing the ossicular chain. Laboratory Animals, 2009, 43, 198-204.	0.5	14

#	Article	IF	CITATIONS
73	Free Bioverit [®] II Implants Coated with a Nanoporous Silica Layer in a Mouse Ear Model — A Histological Study. Journal of Biomaterials Applications, 2009, 24, 175-191.	1.2	24
74	One-dimensional Zn(II) oligo(phenyleneethynylene)dicarboxylate coordination polymers: Synthesis, crystal structures, thermal and photoluminescent properties. Inorganica Chimica Acta, 2009, 362, 3600-3606.	1.2	15
75	Microstructured templates produced using femtosecond laser pulses as templates for the deposition of mesoporous silicas. Microporous and Mesoporous Materials, 2009, 119, 104-108.	2.2	7
76	A comparison of different nanostructured biomaterials in subcutaneous tissue. Journal of Materials Science: Materials in Medicine, 2008, 19, 2629-2636.	1.7	21
77	Influence of shape and surface properties of microstructured reaction areas on the deposition of silica. Colloid and Polymer Science, 2008, 286, 305-311.	1.0	4
78	Microstructured reaction areas for the deposition of silica. Colloid and Polymer Science, 2008, 286, 225-231.	1.0	5
79	Influence of polymeric additives on biomimetic silica deposition on patterned microstructures. Journal of Colloid and Interface Science, 2008, 321, 44-51.	5.0	23
80	Preparation and characterization of sodium-free nanocrystalline sodalite. Microporous and Mesoporous Materials, 2008, 110, 3-10.	2.2	22
81	The Sears number as a probe for the surface chemistry of porous silicas: Precipitated, pyrogenic and ordered mesoporous silicas. Microporous and Mesoporous Materials, 2008, 116, 95-100.	2.2	14
82	Two Zinc(II) Coordination Polymers Constructed with Rigid 1,4-Benzenedicarboxylate and Flexible 1,4-Bis(imidazol-1-ylmethyl)-2,3,5,6-tetramethylbenzene Linkers: From Interpenetrating Layers to Templated 3D Frameworks. Crystal Growth and Design, 2008, 8, 3200-3205.	1.4	67
83	Systematic extension of the length of the organic conjugated π-system of mesoporous silica-based organic–inorganic hybrid materials. Journal of Materials Chemistry, 2008, 18, 2587.	6.7	37
84	Normative data of multifrequency tympanometry in rabbits. Laboratory Animals, 2008, 42, 320-325.	0.5	4
85	Histological evaluation of novel ossicular chain replacement prostheses: an animal study in rabbits. Acta Oto-Laryngologica, 2007, 127, 801-808.	0.3	31
86	The structural change of intercalated iodine determined by the inner surface properties of ion-exchanged zeolite A. Microporous and Mesoporous Materials, 2007, 99, 244-250.	2.2	6
87	Selective Adsorption of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans by the Zeosils UTD-1, SSZ-24, and ITQ-4. Chemistry - A European Journal, 2004, 10, 247-256.	1.7	28
88	Composites of Perylene Chromophores and Layered Double Hydroxides: Direct Synthesis, Characterization, and Photo- and Chemical Stability. Advanced Functional Materials, 2003, 13, 241-248.	7.8	139
89	Organic/inorganic hybrids by â€~living'/controlled ATRP grafting from layered silicates. Journal of Materials Chemistry, 2002, 12, 1351-1354.	6.7	101
90	Observation of Translational Diffusion of Single Terrylenediimide Molecules in a Mesostructured Molecular Sieve. Journal of Physical Chemistry B, 2002, 106, 5591-5595.	1.2	41

#	Article	IF	CITATIONS
91	Probing the Limit of Weak Host–Guest Interactions: Insertion Compounds of Mercury(II) Halides with Microporous SiO2 Hosts. Chemistry - A European Journal, 2002, 8, 3927-3937.	1.7	4
92	Neutron diffraction studies of structural phase transformations for water–ice in confined geometry. Physica A: Statistical Mechanics and Its Applications, 2002, 314, 501-507.	1.2	23
93	Mesostructured Iron Oxyhydroxides. 2. Soft Hydrothermal Restructuring Processes. Chemistry of Materials, 2001, 13, 1467-1472.	3.2	8
94	Mesostructured Iron Oxyhydroxides. 1. Synthesis, Local Structure, and Magnetism. Chemistry of Materials, 2001, 13, 1453-1466.	3.2	33
95	Antimony Oxide-Modified Vanadia-Based CatalystsPhysical Characterization and Catalytic Properties. Journal of Physical Chemistry B, 2001, 105, 10772-10783.	1.2	49
96	Silver Hydro Sodalite [Ag3(H2O)4]2[Al3Si3O12]2: Synthesis and Structure Determination by Combination of X-ray Rietveld Refinement, Thermogravimetry, FT-IR, and1H-MAS NMR Spectroscopy. European Journal of Inorganic Chemistry, 2001, 2001, 1527-1534.	1.0	9
97	Cationic Host-Guest Polymerization ofN-Vinylcarbazole and Vinyl Ethers in MCM-41, MCM-48, and Nanoporous Glasses. Chemistry - A European Journal, 2001, 7, 3722-3728.	1.7	32
98	Visualization of Mesostructures and Organic Guest Inclusion in Molecular Sieves with Confocal Microscopy. Advanced Materials, 2001, 13, 1374-1377.	11.1	39
99	Lead Hydro Sodalite [Pb2(OH)(H2O)3]2[Al3Si3O12]2: Synthesis and Structure Determination by Combining X-ray Rietveld Refinement,1H MAS NMR FTIR and XANES Spectroscopy. Chemistry - A European Journal, 2000, 6, 292-297.	1.7	12
100	High-pressure study on dioxolane silica sodalite (C3H6O2)2[Si12O24]—neutron and X-ray powder diffraction experiments. Solid State Communications, 2000, 113, 503-507.	0.9	15
101	Molecular dynamics in zeolitic host systems. Journal of Molecular Liquids, 2000, 86, 173-182.	2.3	13
102	Electric Field-Induced Second Harmonic Generation on the Host-Guest Compound Cobalticinium Fluoride Nonasil. Advanced Materials, 1999, 11, 238-241.	11.1	9
103	Molecular Dynamics in Confining Space: From the Single Molecule to the Liquid State. Physical Review Letters, 1999, 82, 2338-2341.	2.9	167
104	How many molecules form a liquid?. Journal of Physics Condensed Matter, 1999, 11, A175-A188.	0.7	102
105	Mechanical and Thermal Spreading of Antimony Oxides on the TiO2Surface: Dispersion and Properties of Surface Antimony Oxide Speciesâ€. Journal of Physical Chemistry B, 1999, 103, 9595-9603.	1.2	53
106	Isolated Se6Rings in the Voids of a Weakly Interacting, Electroneutral, and Crystalline SiO2Matrix:Â Combined Experimental and Theoretical Study. Journal of Physical Chemistry B, 1999, 103, 5797-5801.	1.2	15
107	Femtosecond Time-Resolved Dynamics of Geminate and Nongeminate Recombination:  Iodine Enclosed in the Nanocavities of a Microporous SiO2 Modification. Journal of Physical Chemistry A, 1999, 103, 3854-3863.	1.1	31
108	LMU-3: a new cobalt aluminophosphate with exclusively five-coordinated aluminium and octahedrally coordinated cobalt. Inorganica Chimica Acta, 1998, 269, 73-82.	1.2	18

#	Article	IF	CITATIONS
109	Osteochondrosis dissecans. Arthroskopie, 1998, 11, 166-176.	0.5	35
110	Novel synthetic pathways to layered iron(hydro)oxyhydroxide–surfactant composites. Journal of Materials Chemistry, 1998, 8, 1509-1510.	6.7	14
111	Molecular Mechanics Study on Organometallic Complexes in Crystalline Silica Matrixes Using the ESFF (Extensible Systematic Force Field). Chemistry of Materials, 1998, 10, 679-681.	3.2	12
112	Class Transition in Sub-nanometer Confinement. Materials Research Society Symposia Proceedings, 1998, 543, 115.	0.1	0
113	Phase Transitions of Silicasodalite under High Pressure-Single Crystal Studies with Synchrotron Radiation Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1998, 7, 139-141.	0.1	1
114	Dielectric investigations of the molecular dynamics of propanediol in mesoporous silica materials. Journal of Chemical Physics, 1997, 107, 9699-9701.	1.2	43
115	Oxidation catalysts prepared by mechanically and thermally induced spreading of Sb2O3 and V2O5 on TiO2. Studies in Surface Science and Catalysis, 1997, 110, 817-827.	1.5	3
116	Festkörperchemie 1996. Nachrichten Aus Der Chemie, 1997, 45, 138-146.	0.0	0
117	Nucleation of Ice in Confined Geometry. Journal of Physical Chemistry B, 1997, 101, 6226-6229.	1.2	74
118	XANES spectroscopic study of the electronic structure of Ti in KTiOPO4 and some of its isomorphous compounds. Solid State Communications, 1997, 103, 203-207.	0.9	8
119	Five-Coordinate Silicon in Zeolites: Probing SiO4/2Fâ^ Sites in Nonasil and ZSM-5 with29Si Solid-State NMR Spectroscopy. Angewandte Chemie International Edition in English, 1997, 36, 2823-2825.	4.4	92
120	Synthesis, Characterization and Tunable Electronic/Optical Properties of IIâ^'VI Semiconductor Species Included in the Sodalite Structure. Chemistry of Materials, 1996, 8, 1930-1943.	3.2	27
121	Synthesis and characterization of two new silica socialites containing ethanolamine or ethylenediamine as guest species: [C2H7NO]2[Si6O12]2 and [C2H8N2]2[Si6O12]2. Zeolites, 1996, 16, 207-217.	0.9	23
122	Chromophore-zeotype composites: Direct synthesis of an array of strictly aligned metal-organic complex chromophores in a crystalline silica matrix. Advanced Materials, 1996, 8, 65-69.	11.1	13
123	Voids in Variable Chemical Surroundings: Mesoporous Metal Oxides. Angewandte Chemie International Edition in English, 1996, 35, 515-518.	4.4	160
124	New templates for the synthesis of clathrasils. Studies in Surface Science and Catalysis, 1995, 98, 40-41.	1.5	0
125	Modelling structural and dynamical properties of silica sodalites and comparison to the experiment. Studies in Surface Science and Catalysis, 1995, 98, 232-233.	1.5	1
126	The Structures of Anhydrous Silver Sodalite Ag3[Al3Si3O12] at 298, 623, and 723 K from Rietveld Refinements of X-Ray Powder Diffraction Data: Mechanism of Thermal Expansion and of the Phase Transition at 678 K. Journal of Solid State Chemistry, 1995, 115, 55-65.	1.4	13

#	Article	IF	CITATIONS
127	Spectroscopic investigations on periodically arranged molecules in crystalline solid-state matrices. Journal of Molecular Structure, 1995, 348, 85-90.	1.8	6
128	X-ray absorption spectroscopic study on the structure and crystallization of Ga-containing MFI-type zeolites. Microporous Materials, 1995, 3, 433-441.	1.6	16
129	Synthesis and Structural Characterization of Sodalites with Acetate and Formate Guest Anions, [Na4(CH3COO)]2[Al3Si3O12]2 and [Na4(HCOO)]2[Al3Si3O12]2, and their Intracage Oxidation Product [Na5(CO3)][Na3.box.][Al3Si3O12]2. Chemistry of Materials, 1995, 7, 163-170.	3.2	21
130	Tetrahedral Coordination of Mn(IV) by Oxygen in Manganese Sillenite Bi12MnO20. Journal of Solid State Chemistry, 1994, 110, 66-69.	1.4	32
131	(C 3 H 6 O 2) 2 , (Si 6 O 12) 2 , a new silica sodalite synthesized, using 1,3-dioxolane as template. Microporous Materials, 1994, 2, 493-500.	1.6	14
132	Ordered Molecular Arrays as Templates: A New Approach to the Synthesis of Mesoporous Materials. Angewandte Chemie International Edition in English, 1993, 32, 696-699.	4.4	106
133	Mesoporous inorganic solids. Advanced Materials, 1993, 5, 127-132.	11.1	135
134	Synchrotron Radiation Ti-k XANES Study of TiO2Y2O3-Stabilized Tetragonal Zirconia Polycrystals. Journal of the American Ceramic Society, 1993, 76, 197-201.	1.9	22
135	Bonding in silver-oxygen compounds from Ag L3 XANES spectroscopy. Solid State Communications, 1992, 81, 235-239.	0.9	28
136	X-ray absorption spectroscopy in chemistry. TrAC - Trends in Analytical Chemistry, 1992, 11, 218-222.	5.8	17
137	X-ray absorption spectroscopy in chemistry. TrAC - Trends in Analytical Chemistry, 1992, 11, 237-244.	5.8	38
138	The application of omega scans for the characterization of graphite intercalation compounds. Carbon, 1991, 29, 909-913.	5.4	2
139	X-ray absorption spectroscopy of metal atom-substituted microporous materials. Catalysis Today, 1991, 8, 479-490.	2.2	23
140	Ba LIII EXAFS studies of the HTSC Y1Ba2Cu3O7 \hat{a} ² $\hat{l}f$. Physica B: Condensed Matter, 1989, 158, 475-476.	1.3	1
141	The formation of graphite intercalation compounds from trichloroacetic acid and trichloroacetic acid chloride solutions containing molybdenum compounds. Synthetic Metals, 1989, 34, 145-150.	2.1	1
142	X-ray absorption spectroscopy and X-ray diffraction of AuCl3-graphite. Synthetic Metals, 1989, 34, 217-222.	2.1	10
143	Structural characteristics of the graphite intercalation compounds of metal chlorides. Synthetic Metals, 1989, 34, 223-230.	2.1	8
144	C-axis resistance of HgCl2 intercalated graphite as a function of temperature and pressure. Synthetic Metals, 1989, 34, 485-490.	2.1	1

#	Article	IF	CITATIONS
145	Graphite intercalation compounds of PdCl2: Structural investigations. Synthetic Metals, 1989, 34, 199-204.	2.1	14
146	Synthesis and characterization of the graphite intercalation compounds of bismuth trichloride. Carbon, 1988, 26, 641-646.	5.4	15
147	Structural investigations of the graphite intercalation compounds of the dichlorides of the IIB-elements (Zn, Cd, Hg). Synthetic Metals, 1988, 23, 95-100.	2.1	15
148	Some general aspects of the hk0 diffraction patterns of graphite intercalation compounds. Synthetic Metals, 1988, 23, 81-87.	2.1	15