Yong Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5514027/publications.pdf

Version: 2024-02-01

840776 1058476 14 405 11 14 citations h-index g-index papers 14 14 14 201 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Effect of nano addition on the microstructures and mechanical properties of Ti(C, N)-based cermets. Ceramics International, 2005, 31, 165-170.	4.8	92
2	Effect of carbon content on the microstructure and mechanical properties of Ti(C, N)-based cermets. Ceramics International, 2004, 30, 2111-2115.	4.8	60
3	Effect of V content on the microstructure and mechanical properties of Mo2FeB2 based cermets. Materials & Design, 2010, 31, 2680-2683.	5.1	44
4	Effect of Mn content on the microstructure and mechanical properties of Mo2FeB2 based cermets. International Journal of Refractory Metals and Hard Materials, 2010, 28, 286-290.	3.8	33
5	Microstructure and performance of functionally gradient Ti(C, N)-based cermets fabricated by low-pressure carburizing treatment during liquid phase sintering. Ceramics International, 2017, 43, 1956-1962.	4.8	25
6	Effects of Cr content on the microstructure and mechanical properties of Mo2FeB2-based cermets prepared via vacuum sintering. Vacuum, 2018, 155, 509-513.	3.5	25
7	Effect of Mo/B atomic ratio on the microstructure and mechanical properties of Mo2FeB2 based cermets. International Journal of Refractory Metals and Hard Materials, 2010, 28, 338-342.	3.8	24
8	Microstructures and mechanical properties of Mo 2 FeB 2 -based cermets prepared by two-step sintering technique. International Journal of Refractory Metals and Hard Materials, 2018, 72, 56-62.	3.8	24
9	Preparation of Mo2FeB2-based cermets with a core/rim structure by multi-step sintering approach. Ceramics International, 2019, 45, 22371-22375.	4.8	23
10	Microstructure and mechanical properties of Ti(C,N)-based cermets fabricated by in situ carbothermal reduction of TiO2 and subsequent liquid phase sintering. Ceramics International, 2018, 44, 3092-3098.	4.8	20
11	Fabrication of Ti(C,N)â€based cermets by in situ carbothermal reduction of MoO ₃ and subsequent liquid sintering. Journal of the American Ceramic Society, 2017, 100, 1578-1587.	3.8	15
12	Microstructure evolution and characteristic of Ti(C,N)â€based cermets prepared by in situ carbothermal reduction in TiO ₂ . Journal of the American Ceramic Society, 2019, 102, 3009-3018.	3.8	9
13	Interface-reinforced Mo2FeB2-based cermets prepared by multi-step sintering under rapid cooling. International Journal of Refractory Metals and Hard Materials, 2021, 99, 105576.	3.8	6
14	Influence of multiâ€step sintering on microstructural evolution and interfacial characteristics of Mo ₂ FeB ₂ â€based cermets. Journal of the American Ceramic Society, 2020, 103, 6040-6049.	3.8	5