Hui Pan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5513677/hui-pan-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

9,807 256 51 91 h-index g-index citations papers 11,686 6.8 6.92 270 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
256	Interfacial Engineering of PTAA/Perovskites for Improved Crystallinity and Hole Extraction in Inverted Perovskite Solar Cells ACS Applied Materials & Inverted Perovskite Solar Cells	9.5	7
255	Two-Dimensional Dirac Nodal Line Carbon Nitride to Anchor Single-Atom Catalyst for Oxygen Reduction Reaction <i>ChemSusChem</i> , 2022 , e202102537	8.3	0
254	Insight into adsorption mechanism of water on tricalcium silicate from first-principles calculations. <i>Cement and Concrete Research</i> , 2022 , 152, 106684	10.3	2
253	Insightful view on the active sites of Ni/NixP for hydrogen evolution reaction. <i>Applied Materials Today</i> , 2022 , 26, 101343	6.6	1
252	Direct Z-scheme construction of g-C3N4 quantum dots / TiO2 nanoflakes for efficient photocatalysis. <i>Chemical Engineering Journal</i> , 2022 , 430, 132861	14.7	5
251	Remarkable synergistic effect in cobalt-iron nitride/alloy nanosheets for robust electrochemical water splitting. <i>Journal of Energy Chemistry</i> , 2022 , 65, 405-414	12	11
250	In situ surface reconstruction on LaCoO3lleads to enhanced hydrogen evolution reaction. <i>Journal of Alloys and Compounds</i> , 2022 , 891, 161754	5.7	2
249	Ab initio mechanism revealing for tricalcium silicate dissolution <i>Nature Communications</i> , 2022 , 13, 125	317.4	1
248	Co2N0.67/MoO2 Heterostructure as High-Efficiency Electrocatalysts for the Hydrogen Evolution Reaction. <i>ACS Applied Energy Materials</i> , 2022 , 5, 440-448	6.1	1
247	Processing Agricultural Cornstalks toward High-Efficient Stable Bifunctional ORR/OER Electrocatalysts. <i>Advanced Sustainable Systems</i> , 2022 , 6, 2100343	5.9	0
246	In-situ generation of Ni-CoOOH through deep reconstruction for durable alkaline water electrolysis. <i>Chemical Engineering Journal</i> , 2022 , 136432	14.7	0
245	Reconstruction Optimization of Distorted FeOOH/Ni Hydroxide for Enhanced Oxygen Evolution Reaction. <i>Materials Today Energy</i> , 2022 , 101005	7	1
244	Toward Enhanced Oxygen Evolution on NaBH4 Treated Ba0.5Sr0.5Co0.8Fe0.2O3-[Nanofilm: Insights into the Facilitated Surface Reconstruction. <i>Materials Today Energy</i> , 2022 , 101046	7	O
243	Atomically Dispersed Heteronuclear Dual-Atom Catalysts: A New Rising Star in Atomic Catalysis Small, 2021 , e2106091	11	9
242	Corrosion engineering boosting bulk Fe50Mn30Co10Cr10 high-entropy alloy as high-efficient alkaline oxygen evolution reaction electrocatalyst. <i>Journal of Materials Science and Technology</i> , 2021 , 109, 267-267	9.1	2
241	3D VNi3S2@CoFe-LDH core-shell electrocatalysts for efficient water oxidation. <i>International Journal of Hydrogen Energy</i> , 2021 ,	6.7	4
240	Development of Perovskite Oxide-Based Electrocatalysts for Oxygen Evolution Reaction (Small 43/2021). <i>Small</i> , 2021 , 17, 2170226	11	2

(2021-2021)

239	Multi-Phase Heterostructure of CoNiP/Co P for Enhanced Hydrogen Evolution Under Alkaline and Seawater Conditions by Promoting H O Dissociation. <i>Small</i> , 2021 , 17, e2007557	11	19
238	Perovskite Solar Cells: Sputtered Indium-Zinc Oxide for Buffer Layer Free Semitransparent Perovskite Photovoltaic Devices in Perovskite/Silicon 4T-Tandem Solar Cells (Adv. Mater. Interfaces 6/2021). <i>Advanced Materials Interfaces</i> , 2021 , 8, 2170029	4.6	1
237	Coordination of EDelocalization in g-CN for Efficient Photocatalytic Hydrogen Evolution under Visible Light. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 20114-20124	9.5	11
236	Single transition metal atom catalysts on Ti2CN2 for efficient CO2 reduction reaction. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 12886-12896	6.7	12
235	Quaternary-metal phosphide as electrocatalyst for efficient hydrogen evolution reaction in alkaline solution. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 18878-18886	6.7	3
234	Engineering Pt and Fe dual-metal single atoms anchored on nitrogen-doped carbon with high activity and durability towards oxygen reduction reaction for zinc-air battery. <i>Applied Catalysis B: Environmental</i> , 2021 , 286, 119891	21.8	51
233	CNSi/MXene/CNSi: Unique Structure with Specific Electronic Properties for Nanodevices. <i>Small</i> , 2021 , 17, e2101482	11	0
232	Unravelling the Reaction Mechanisms of N Fixation on Molybdenum Nitride: A Full DFT Study from the Pristine Surface to Heteroatom Anchoring. <i>ChemSusChem</i> , 2021 , 14, 3257-3266	8.3	7
231	Designing Intrinsic Topological Insulators in Two-Dimensional Metal-Organic Frameworks. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 6934-6940	6.4	1
230	Development of Perovskite Oxide-Based Electrocatalysts for Oxygen Evolution Reaction. <i>Small</i> , 2021 , 17, e2101605	11	16
229	Photocatalysis over MXene-based hybrids: Synthesis, surface chemistry, and interfacial charge kinetics. <i>APL Materials</i> , 2021 , 9, 070703	5.7	9
228	Optimization the energy density and efficiency of BaTiO3-based ceramics for capacitor applications. <i>Chemical Engineering Journal</i> , 2021 , 409, 127375	14.7	29
227	Enhancement thermal stability of polyetherimide-based nanocomposites for applications in energy storage. <i>Composites Science and Technology</i> , 2021 , 201, 108501	8.6	22
226	Synergistic electronic and morphological modulation on ternary Co1½VxP nanoneedle arrays for hydrogen evolution reaction with large current density. <i>Science China Materials</i> , 2021 , 64, 880-891	7.1	9
225	Design of phosphorus-functionalized MXenes for highly efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2021 , 9, 597-606	13	7
224	Substantially improved energy storage capability of ferroelectric thin films for application in high-temperature capacitors. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 9281-9290	13	11
223	Sputtered Indium-Zinc Oxide for Buffer Layer Free Semitransparent Perovskite Photovoltaic Devices in Perovskite/Silicon 4T-Tandem Solar Cells. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2001604	4.6	10
222	MXenes: Novel electrocatalysts for hydrogen production and nitrogen reduction. <i>Catalysis Today</i> , 2021 , 370, 2-13	5.3	9

221	Ab initio design of a new family of 2D materials: transition metal carbon nitrogen compounds (MCNs). <i>Journal of Materials Chemistry C</i> , 2021 , 9, 4748-4756	7.1	2
220	Synergistic carbon and hydrogen reactions in the electrochemical reduction of CO2 to liquid fuels. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 10546-10561	13	5
219	Charge-transfer induced multifunctional BCP:Ag complexes for semi-transparent perovskite solar cells with a record fill factor of 80.1%. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 12009-12018	13	16
218	Theoretical evidence of the spin-valley coupling and valley polarization in two-dimensional MoSiX (X = N, P, and As). <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 3144-3151	3.6	20
217	Tuning CO binding strength via engineering the copper/borophene interface for highly efficient conversion of CO into ethanol. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 13192-13199	13	7
216	An enhanced oxygen evolution reaction on 2D CoOOH via strain engineering: an insightful view from spin state transition. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 17749-17759	13	9
215	AgS monolayer: an ultrasoft inorganic Lieb lattice. <i>Nanoscale</i> , 2021 , 13, 14008-14015	7.7	1
214	Direct coherent multi-ink printing of fabric supercapacitors. <i>Science Advances</i> , 2021 , 7,	14.3	44
213	Pentagonal transition-metal (group X) chalcogenide monolayers: Intrinsic semiconductors for photocatalysis. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 9371-9379	6.7	8
212	Close-loop recycling of perovskite solar cells through dissolution-recrystallization of perovskite by butylamine. <i>Cell Reports Physical Science</i> , 2021 , 2, 100341	6.1	18
211	Postfire Properties of a Sigma Phase Containing Duplex Stainless Steel: Problems for Construction Use. <i>Journal of Materials in Civil Engineering</i> , 2021 , 33, 04021193	3	
210	Engineering carbon-shells of M@NC bifunctional oxygen electrocatalyst towards stable aqueous rechargeable Zn-air batteries. <i>Chemical Engineering Journal</i> , 2021 , 418, 129409	14.7	12
209	Engineering highly active Ag/Nb2O5@Nb2CT (MXene) photocatalysts via steering charge kinetics strategy. <i>Chemical Engineering Journal</i> , 2021 , 421, 128766	14.7	18
208	Surface reconstruction on silver nanoparticles decorated trimetallic hydroxide nanosheets to generate highly active oxygen-deficient (oxy)hydroxide layer for high-efficient water oxidation. <i>Chemical Engineering Journal</i> , 2021 , 425, 131662	14.7	8
207	Design of 2D materials - MSiCN (M = Cr, Mo, and W; $x = 1$ and 2) - with tunable electronic and magnetic properties. <i>Nanoscale</i> , 2021 , 13, 8038-8048	7.7	4
206	Graphynes as emerging 2D-platforms for electronic and energy applications: a computational perspective. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 6392-6412	7.8	2
205	Development of Electrocatalysts for Efficient Nitrogen Reduction Reaction under Ambient Condition. <i>Advanced Functional Materials</i> , 2021 , 31, 2008983	15.6	34
204	Van der Waals Antiferroelectric Magnetic Tunnel Junction: A First-Principles Study of a CrSe/CuInPS/CrSe Junction. <i>ACS Applied Materials & Description (Communication) and the Communication (Communication) and the Communic</i>	9.5	1

(2020-2020)

203	PLD-fabricated perovskite oxide nanofilm as efficient electrocatalyst with highly enhanced water oxidation performance. <i>Applied Catalysis B: Environmental</i> , 2020 , 272, 119046	21.8	20
202	Design of novel pentagonal 2D transitional-metal sulphide monolayers for hydrogen evolution reaction. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 16201-16209	6.7	13
201	Nitrogen-Doped Graphene Quantum Dots for Remarkable Solar Hydrogen Production. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5322-5332	6.1	29
200	Substrate strain engineering: an efficient strategy to enhance the catalytic activity of SACs on waved graphene for e-NRR. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 3773-3779	5.8	6
199	Amorphous NiWO4 nanoparticles boosting the alkaline hydrogen evolution performance of Ni3S2 electrocatalysts. <i>Applied Catalysis B: Environmental</i> , 2020 , 274, 119120	21.8	46
198	Ultrahigh breakdown strength and energy density of polymer nanocomposite containing surface insulated BCZT@BN nanofibers. <i>Composites Science and Technology</i> , 2020 , 195, 108209	8.6	16
197	First-principles investigation of ScX (X = Cl, Br, or I) monolayers for flexible spintronic and electronic applications. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 14781-14786	3.6	2
196	Investigation on the role of amines in the liquefaction and recrystallization process of MAPbI3 perovskite. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 13585-13593	13	7
195	Waved 2D Transition-Metal Disulfides for Nanodevices and Catalysis: A First-Principle Study. <i>ACS Applied Nano Materials</i> , 2020 , 3, 2804-2812	5.6	11
194	Engineering Sulfide-Phosphide Based Double Catalysts on 3D Nickel Phosphides Framework for Electrolytic Hydrogen Evolution: Activating Short-range Crystalline MoS2 with Ni5P4-Ni2P Template. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 026511	3.9	6
193	Two-Dimensional Layered Materials: High-Efficient Electrocatalysts for Hydrogen Evolution Reaction. <i>ACS Applied Nano Materials</i> , 2020 , 3, 6270-6296	5.6	27
192	Carrier-potential interaction for high-Tc superconductivity. <i>International Journal of Modern Physics B</i> , 2020 , 34, 2050163	1.1	
191	Vertically-aligned 1T/2H-MS2 (M = Mo, W) nanosheets for surface-enhanced Raman scattering with long-term stability and large-scale uniformity. <i>Applied Surface Science</i> , 2020 , 527, 146769	6.7	19
190	Electronic state optimization for electrochemical N2 reduction reaction in aqueous solution. Journal of Materials Chemistry A, 2020 , 8, 13896-13915	13	32
189	Nonhydrolytic sol-gel in-situ synthesis of novel recoverable amorphous Fe2TiO5/C hollow spheres as visible-light driven photocatalysts. <i>Materials and Design</i> , 2020 , 194, 108928	8.1	7
188	Oxygen Evolution Reaction Kinetics: Reducing Oxygen Evolution Reaction Overpotential in Cobalt-Based Electrocatalysts via Optimizing the Microparticles-in-Spider WebŒlectrode Configurations (Small 8/2020). <i>Small</i> , 2020 , 16, 2070041	11	1
187	The structures, electronic properties, and chemical bonding of binary alloy boron luminum clusters series B4Aln0///I+ (n = 15). <i>Materials Today Communications</i> , 2020 , 24, 100914	2.5	2
186	Beyond the MahanBofo best thermoelectric strategy: high thermoelectric performance from directional Econjugation in two-dimensional poly(tetrathienoanthracene). <i>Journal of Materials Chemistry A</i> , 2020 , 8, 4257-4262	13	7

185	Reducing Oxygen Evolution Reaction Overpotential in Cobalt-Based Electrocatalysts via Optimizing the "Microparticles-in-Spider Web" Electrode Configurations. <i>Small</i> , 2020 , 16, e1907029	11	23
184	Designing Efficient Dual-Metal Single-Atom Electrocatalyst TMZnN6 (TM = Mn, Fe, Co, Ni, Cu, Zn) for Oxygen Reduction Reaction. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 11301-11307	3.8	29
183	1T? Transition-Metal Dichalcogenides: Strong Bulk Photovoltaic Effect for Enhanced Solar-Power Harvesting. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 11221-11228	3.8	4
182	Ferroelectric control of single-molecule magnetism in 2D limit. <i>Science Bulletin</i> , 2020 , 65, 1252-1259	10.6	20
181	Cavitation Erosion Damage Mechanism of a Duplex Stainless Steel Having a Ferrite-Austenite-Sigma-Phase Triplex Microstructure. <i>Journal of Materials Engineering and Performance</i> , 2020 , 29, 2806-2815	1.6	4
180	Two-step solvent post-treatment on PTAA for highly efficient and stable inverted perovskite solar cells. <i>Photonics Research</i> , 2020 , 8, A39	6	11
179	Combined Experimental and Theoretical Assessment of WXy (X = C, N, S, P) for Hydrogen Evolution Reaction. <i>ACS Applied Energy Materials</i> , 2020 , 3, 1082-1088	6.1	12
178	Van der Waals Contact to 2D Semiconductors with a Switchable Electric Dipole: Achieving Both n- and p-Type Ohmic Contacts to Metals with a Wide Range of Work Functions. <i>Advanced Electronic</i> <i>Materials</i> , 2020 , 6, 1900981	6.4	6
177	Disclosing the microscopic mechanism and adsorption properties of CO capture in N-isopropylethylenediamine appended M(dobpdc) series. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 24614-24623	3.6	6
176	Two-dimensional materials as novel co-catalysts for efficient solar-driven hydrogen production. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 23202-23230	13	36
175	Surface Reconstruction and Phase Transition on Vanadium Dobalt Iron Trimetal Nitrides to Form Active Oxyhydroxide for Enhanced Electrocatalytic Water Oxidation. <i>Advanced Energy Materials</i> , 2020 , 10, 2002464	21.8	76
174	Highly improved electrocatalytic activity of NiSx: Effects of Cr-doping and phase transition. <i>Applied Catalysis B: Environmental</i> , 2020 , 267, 118721	21.8	34
173	Magnetic and electronic properties of 2D TiX (X = F, Cl, Br and I). <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 17632-17638	3.6	3
172	Mo incorporated Ni nanosheet as high-efficiency co-catalyst for enhancing the photocatalytic hydrogen production of g-C3N4. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 18912-18921	6.7	14
171	2D materials: Excellent substrates for surface-enhanced Raman scattering (SERS) in chemical sensing and biosensing. <i>TrAC - Trends in Analytical Chemistry</i> , 2020 , 130, 115983	14.6	30
170	Theoretical Screening of Single Atoms Supported on Two-Dimensional Nb2CN2 for Nitrogen Fixation. <i>ACS Applied Nano Materials</i> , 2020 , 3, 11274-11281	5.6	20
169	Oxygen Evolution Reaction: Surface Reconstruction and Phase Transition on Vanadium Dobalt Iron Trimetal Nitrides to Form Active Oxyhydroxide for Enhanced Electrocatalytic Water Oxidation (Adv. Energy Mater. 45/2020). Advanced Energy Materials, 2020, 10, 2070184	21.8	2
168	High-Performance Semitransparent and Bifacial Perovskite Solar Cells with MoOx/Ag/WOx as the Rear Transparent Electrode. <i>Advanced Materials Interfaces</i> , 2020 , 7, 2000591	4.6	6

167	Atomistic Level Mechanism of CO2 Adsorption in N-Ethylethylenediamine-Functionalized M2(dobpdc) Metal Drganic Frameworks. <i>Crystal Growth and Design</i> , 2020 , 20, 6337-6345	3.5	7
166	Co single-atom anchored on Co3O4 and nitrogen-doped active carbon toward bifunctional catalyst for zinc-air batteries. <i>Applied Catalysis B: Environmental</i> , 2020 , 260, 118188	21.8	94
165	Cobalt/titanium nitride@N-doped carbon hybrids for enhanced electrocatalytic hydrogen evolution and supercapacitance. <i>New Journal of Chemistry</i> , 2019 , 43, 14518-14526	3.6	9
164	Vanadium self-intercalated C/V1.11S2 nanosheets with abundant active sites for enhanced electro-catalytic hydrogen evolution. <i>Electrochimica Acta</i> , 2019 , 300, 208-216	6.7	12
163	Highly in-plane anisotropic 2D semiconductors PAuSe with multiple superior properties: a first-principles investigation. <i>Journal of Physics Condensed Matter</i> , 2019 , 31, 395501	1.8	4
162	Mixed Two-Dimensional Organic-Inorganic Halide Perovskites for Highly Efficient and Stable Photovoltaic Application. <i>Molecules</i> , 2019 , 24,	4.8	1
161	WX /g-C N (WX =W C, WS , or W N) Composites for Highly Efficient Photocatalytic Water Splitting. <i>ChemSusChem</i> , 2019 , 12, 3355-3362	8.3	49
160	BC2N monolayers as promising anchoring materials for lithium-sulfur batteries: First-principles insights. <i>Carbon</i> , 2019 , 149, 530-537	10.4	30
159	H-/dT-MoS2-on-MXene Heterostructures as Promising 2D Anode Materials for Lithium-Ion Batteries: Insights from First Principles. <i>Advanced Theory and Simulations</i> , 2019 , 2, 1900045	3.5	12
158	WS2 Nanosheets with Highly-Enhanced Electrochemical Activity by Facile Control of Sulfur Vacancies. <i>ChemCatChem</i> , 2019 , 11, 2667-2675	5.2	36
157	Cobalt-Vanadium Hydroxide Nanoneedles with a Free-Standing Structure as High-Performance Oxygen Evolution Reaction Electrocatalysts. <i>ChemElectroChem</i> , 2019 , 6, 2050-2055	4.3	19
156	Significance of hydrogen bonding networks in the proton-coupled electron transfer reactions of photosystem II from a quantum-mechanics perspective. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 8721-8728	3.6	2
155	Design of pentagonal NbX monolayers for electronics and electrocatalysis. <i>Applied Surface Science</i> , 2019 , 479, 595-600	6.7	11
154	Defining the composition and electronic structure of large-scale and single-crystalline like Cs2AgBiBr6 films fabricated by capillary-assisted dip-coating method. <i>Materials Today Energy</i> , 2019 , 12, 186-197	7	17
153	Enhanced N2-Fixation by Engineering the Edges of Two-Dimensional Transition-Metal Disulfides. Journal of Physical Chemistry C, 2019 , 123, 22221-22227	3.8	35
152	Enhancing the Efficiency and Stability of NiOx-Based Silicon Photoanode via Interfacial Engineering. <i>ACS Applied Energy Materials</i> , 2019 , 2, 6883-6890	6.1	2
151	In Situ Hybridizing MoS2 Microflowers on VS2 Microflakes in a One-Pot CVD Process for Electrolytic Hydrogen Evolution Reaction. <i>ACS Applied Energy Materials</i> , 2019 , 2, 5799-5808	6.1	28
150	Ultrafine WC1N Nanocrystals: An Efficient Cocatalyst for the Significant Enhancement of Photocatalytic Hydrogen Evolution on g-C3N4. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 26136-26144	3.8	24

149	Photoresponse of nonvolatile resistive memory device based on all-inorganic perovskite CsPbBr3 nanocrystals. <i>Journal Physics D: Applied Physics</i> , 2019 , 52, 125103	3	13
148	A novel Mn/Co dual nanoparticle decorated hierarchical carbon structure derived from a biopolymer hydrogel as a highly efficient electro-catalyst for the oxygen reduction reaction. <i>Chemical Communications</i> , 2019 , 55, 13900-13903	5.8	8
147	One-Pot Synthesis of Co-Doped VSe2 Nanosheets for Enhanced Hydrogen Evolution Reaction. <i>ACS Applied Energy Materials</i> , 2019 , 2, 644-653	6.1	41
146	Network-Like Ni1\(\text{Mox} \) Nanosheets: Multi-Functional Electrodes for Overall Water Splitting and Supercapacitor. <i>ChemElectroChem</i> , 2019 , 6, 1338-1343	4.3	10
145	High-Performance Sodium-Ion Batteries Based on Nitrogen-Doped Mesoporous Carbon Spheres with Ultrathin Nanosheets. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 2970-2977	9.5	51
144	Hierarchical Ultrafine Ni3V2O8 Nanoparticles Anchored on rGO as High-Performance Anode Materials for Lithium-Ion Batteries. <i>Energy Technology</i> , 2019 , 7, 1800784	3.5	6
143	Carbonized MoS2: Super-Active Co-Catalyst for Highly Efficient Water Splitting on CdS. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 4220-4229	8.3	43
142	Highly stable tungsten disulfide supported on a self-standing nickel phosphide foam as a hybrid electrocatalyst for efficient electrolytic hydrogen evolution. <i>Nano Energy</i> , 2019 , 55, 193-202	17.1	43
141	Fullerene/layered antiferromagnetic reconstructed spinterface: Subsurface layer dominates molecular orbitals' spin-split and large induced magnetic moment. <i>Journal of Chemical Physics</i> , 2018 , 148, 114704	3.9	1
140	Aqueous rechargeable dual-ion battery based on fluoride ion and sodium ion electrochemistry. Journal of Materials Chemistry A, 2018 , 6, 8244-8250	13	41
139	Structural and Electronic Properties of Two-Dimensional OrganicIhorganic Halide Perovskites and their Stability against Moisture. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 5844-5853	3.8	15
138	Efficient nitrogen fixation to ammonia on MXenes. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 1450	4-3 <i>:</i> 451	2 65
137	A new ether-based electrolyte for lithium sulfur batteries using a S@pPAN cathode. <i>Chemical Communications</i> , 2018 , 54, 5478-5481	5.8	31
136	Electronic, magnetic, catalytic, and electrochemical properties of two-dimensional Janus transition metal chalcogenides. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 8021-8029	13	36
135	Exploring new two-dimensional monolayers: pentagonal transition metal borides/carbides (penta-TMB/Cs). <i>Journal of Materials Chemistry A</i> , 2018 , 6, 10226-10232	13	56
134	3D heterostructured pure and N-Doped Ni3S2/VS2 nanosheets for high efficient overall water splitting. <i>Electrochimica Acta</i> , 2018 , 269, 55-61	6.7	91
133	High-performance supercapacitors based on superior Co3O4 nanorods electrode for integrated energy harvesting-storage system. <i>Electrochimica Acta</i> , 2018 , 282, 905-912	6.7	15
132	Two-dimensional pentagonal CrX (X = S, Se or Te) monolayers: antiferromagnetic semiconductors for spintronics and photocatalysts. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 18348-18354	3.6	20

(2017-2018)

131	Enhancement of Visible-Light Photocatalytic Hydrogen Production by CeCO3OH in g-C3N4/CeO2 System. <i>ChemCatChem</i> , 2018 , 11, 1069	5.2	3	
130	Multifunctional two-dimensional semiconductors SnP: universal mechanism of layer-dependent electronic phase transition. <i>Journal of Physics Condensed Matter</i> , 2018 , 30, 475702	1.8	9	
129	Two-Dimensional Janus Transition Metal Oxides and Chalcogenides: Multifunctional Properties for Photocatalysts, Electronics, and Energy Conversion. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2018 , 10, 35289-35295	9.5	77	
128	N and V Coincorporated Ni Nanosheets for Enhanced Hydrogen Evolution Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 16525-16531	8.3	18	
127	Effect of Curvature on the Hydrogen Evolution Reaction of Graphene. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 25331-25338	3.8	16	
126	Double-coated Si-based composite composed with carbon layer and graphene sheets with void spaces for lithium-ion batteries. <i>Electrochimica Acta</i> , 2018 , 288, 134-143	6.7	26	
125	Vanadium disulfide decorated graphitic carbon nitride for super-efficient solar-driven hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2018 , 237, 295-301	21.8	57	
124	Facile Synthesis of Vanadium-Doped NiS Nanowire Arrays as Active Electrocatalyst for Hydrogen Evolution Reaction. <i>ACS Applied Materials & Interfaces</i> , 2017 , 9, 5959-5967	9.5	138	
123	Waved graphene: Unique structure for the adsorption of small molecules. <i>Materials Chemistry and Physics</i> , 2017 , 189, 111-117	4.4	14	
122	Exploration of CPT violation via time-dependent geometric quantities embedded in neutrino oscillation through fluctuating matter. <i>Nuclear Physics B</i> , 2017 , 915, 414-430	2.8	4	
121	Ultra-high electrocatalytic activity of VS2 nanoflowers for efficient hydrogen evolution reaction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 15080-15086	13	141	
120	Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solid-state supercapacitors. <i>Electrochimica Acta</i> , 2017 , 244, 112-118	6.7	58	
119	Active oxygen species on Mgla mixed oxides: the effect of Mg and La oxide interactions. <i>Catalysis Science and Technology</i> , 2017 , 7, 797-801	5.5	15	
118	Biopolymer-chitosan based supramolecular hydrogels as solid state electrolytes for electrochemical energy storage. <i>Chemical Communications</i> , 2017 , 53, 1615-1618	5.8	64	
117	N-Functionalized MXenes: ultrahigh carrier mobility and multifunctional properties. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 28710-28717	3.6	34	
116	Electronic, Magnetic, and Catalytic Properties of Thermodynamically Stable Two-Dimensional Transition-Metal Phosphides. <i>Chemistry of Materials</i> , 2017 , 29, 8892-8900	9.6	49	
115	Exploring an effective oxygen reduction reaction catalyst via 4elprocess based on waved-graphene. <i>Science China Materials</i> , 2017 , 60, 739-746	7.1	7	
114	Efficient coupling of a hierarchical V2O5@Ni3S2 hybrid nanoarray for pseudocapacitors and hydrogen production. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 17954-17962	13	61	

113	Tension-Tailored Electronic and Magnetic Switching of 2D Ti2NO2. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 25729-25735	3.8	24
112	Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 16748-16756	13	141
111	Pancharatnam Phase and Quantum Correlation for Two-qubit System in Correlated Dephasing Environment. <i>International Journal of Theoretical Physics</i> , 2016 , 55, 1474-1491	1.1	
110	A First-Principles Study on the Structural and Electronic Properties of Sn-Based OrganicIhorganic Halide Perovskites. <i>Journal of Electronic Materials</i> , 2016 , 45, 5956-5966	1.9	19
109	Hydrogenation-controlled phase transition on two-dimensional transition metal dichalcogenides and their unique physical and catalytic properties. <i>Scientific Reports</i> , 2016 , 6, 34186	4.9	49
108	Tension-Enhanced Hydrogen Evolution Reaction on Vanadium Disulfide Monolayer. <i>Nanoscale Research Letters</i> , 2016 , 11, 113	5	34
107	Geometric phases and quantum correlations of superconducting two-qubit system with dissipative effect. <i>Physica C: Superconductivity and Its Applications</i> , 2016 , 520, 8-18	1.3	2
106	Phase-driven magneto-electrical characteristics of single-layer MoS2. <i>Nanoscale</i> , 2016 , 8, 5627-33	7.7	21
105	Two-dimensional transition-metal oxide monolayers as cathode materials for Li and Na ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 7527-34	3.6	41
104	Principles on design and fabrication of nanomaterials as photocatalysts for water-splitting. Renewable and Sustainable Energy Reviews, 2016 , 57, 584-601	16.2	156
103	An experimental and theoretical investigation of the anisotropic branching in gold nanocrosses. <i>Nanoscale</i> , 2016 , 8, 543-52	7.7	84
102	Ultra-high electrochemical catalytic activity of MXenes. <i>Scientific Reports</i> , 2016 , 6, 32531	4.9	86
101	Transition of Bery Phase and Pancharatnam Phase and Phase Change. <i>International Journal of Theoretical Physics</i> , 2016 , 55, 3428-3439	1.1	
100	Motion Center in Quantum Wave Packet Dynamics. <i>Acta Physica Polonica A</i> , 2015 , 127, 761-766	0.6	1
99	Effects of non-metal dopants and defects on electronic properties of barium titanate as photocatalyst. <i>International Journal of Hydrogen Energy</i> , 2015 , 40, 4766-4776	6.7	13
98	Bandgap engineering of oxygen-rich TiO2+x for photocatalyst with enhanced visible-light photocatalytic ability. <i>Journal of Materials Science</i> , 2015 , 50, 4324-4329	4.3	19
-			
97	Realization of Dirac Cones in Few Bilayer Sb(111) Films by Surface Modification. <i>Nanoscale Research Letters</i> , 2015 , 10, 1043	5	6

(2014-2015)

95	A first-principles study on the hydrogen evolution reaction of VS2 nanoribbons. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 24820-5	3.6	77	
94	Electronic properties and lithium storage capacities of two-dimensional transition-metal nitride monolayers. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 21486-21493	13	60	
93	Trapped ionic simulation of neutrino electromagnetic properties in neutrino oscillation. <i>Nuclear Physics B</i> , 2015 , 900, 560-575	2.8	3	
92	Effect of Doping on Hydrogen Evolution Reaction of Vanadium Disulfide Monolayer. <i>Nanoscale Research Letters</i> , 2015 , 10, 480	5	28	
91	Electronic properties of tin dichalcogenide monolayers and effects of hydrogenation and tension. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 3714-3721	7.1	27	
90	Geometric phase of two-qubit system in dephasing environment. <i>International Journal of Modern Physics B</i> , 2015 , 29, 1550236	1.1	1	
89	Geometric phase in inhomogeneous optical nutation. European Physical Journal D, 2015, 69, 1	1.3		
88	Geometric phase carried by the observables and its application to quantum computation. <i>Quantum Information and Computation</i> , 2015 , 15, 951-961	0.9	5	
87	Ultra-flexibility and unusual electronic, magnetic and chemical properties of waved graphenes and nanoribbons. <i>Scientific Reports</i> , 2014 , 4, 4198	4.9	24	
86	Metal dichalcogenides monolayers: novel catalysts for electrochemical hydrogen production. <i>Scientific Reports</i> , 2014 , 4, 5348	4.9	131	
85	Constructing metallic nanoroads on a MoSImonolayer via hydrogenation. <i>Nanoscale</i> , 2014 , 6, 1691-7	7.7	41	
84	Electronic and Magnetic Properties of Vanadium Dichalcogenides Monolayers Tuned by Hydrogenation. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 13248-13253	3.8	87	
83	Graphitic Carbon Nitride Nanotubes As Li-Ion Battery Materials: A First-Principles Study. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 9318-9323	3.8	54	
82	Geometric phase and non-stationary state. <i>Optik</i> , 2014 , 125, 4814-4818	2.5	2	
81	Mechanism of insulator-to-metal transition in heavily Nb doped anatase TiO2. <i>Materials Research Express</i> , 2014 , 1, 015911	1.7	9	
80	Progress on the Theoretical Study of Two-Dimensional MoS2 Monolayer and Nanoribbon. <i>Lecture Notes in Nanoscale Science and Technology</i> , 2014 , 1-35	0.3	2	
79	Ab initio study on the effects of dopantdefect cluster on the electronic properties of TiO2-based photocatalysts. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 2049-2055	6.7	15	
78	Nanoscale Transition Metal Dichalcogenides: Structures, Properties, and Applications. <i>Critical</i>	10.1		

77	On the notch sensitivity of CuZr nanoglass. Journal of Applied Physics, 2014, 115, 163507	2.5	18
76	Magnetic and electronic evolutions of hydrogenated VTeImonolayer under tension. <i>Scientific Reports</i> , 2014 , 4, 7524	4.9	38
75	Ab initio design of nanostructures for solar energy conversion: a case study on silicon nitride nanowire. <i>Nanoscale Research Letters</i> , 2014 , 9, 531	5	2
74	Ab initio design of GaN-based photocatalyst: ZnO-codoped GaN nanotubes. <i>Journal of Power Sources</i> , 2013 , 232, 323-331	8.9	18
73	Quantum correlations of coupled superconducting two-qubit system in various cavity environments. <i>Physica C: Superconductivity and Its Applications</i> , 2013 , 495, 88-108	1.3	18
72	The resistive switching in TiO2 films studied by conductive atomic force microscopy and Kelvin probe force microscopy. <i>AIP Advances</i> , 2013 , 3, 082107	1.5	34
71	Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. <i>Physical Review B</i> , 2013 , 87,	3.3	662
70	Strong ferromagnetism in hydrogenated monolayer MoS2 tuned by strain. <i>Physical Review B</i> , 2013 , 88,	3.3	113
69	ELECTRONIC AND MAGNETIC PROPERTIES OF SILICENE AND SILICANE NANORIBBONS. International Journal of Computational Materials Science and Engineering, 2013 , 02, 1350011	0.3	3
68	GaN/ZnO superlattice nanowires as photocatalyst for hydrogen generation: A first-principles study on electronic and magnetic properties. <i>Nano Energy</i> , 2012 , 1, 488-493	17.1	57
68 67		17.1 3·5	57 15
	on electronic and magnetic properties. <i>Nano Energy</i> , 2012 , 1, 488-493 The nature of the atomic-level structure in the Cu Z binary metallic glasses. <i>Intermetallics</i> , 2012 ,	<i>,</i>	
67	on electronic and magnetic properties. <i>Nano Energy</i> , 2012 , 1, 488-493 The nature of the atomic-level structure in the Cu🏿 binary metallic glasses. <i>Intermetallics</i> , 2012 , 26, 8-10 Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons. <i>Journal of</i>	<i>,</i>	15
6 ₇	on electronic and magnetic properties. <i>Nano Energy</i> , 2012 , 1, 488-493 The nature of the atomic-level structure in the Culdr binary metallic glasses. <i>Intermetallics</i> , 2012 , 26, 8-10 Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7280 Hydrogen adsorption on and diffusion through MoS2 monolayer: First-principles study.	3.5	15
67 66 65	on electronic and magnetic properties. <i>Nano Energy</i> , 2012 , 1, 488-493 The nature of the atomic-level structure in the Culdr binary metallic glasses. <i>Intermetallics</i> , 2012 , 26, 8-10 Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7280 Hydrogen adsorption on and diffusion through MoS2 monolayer: First-principles study. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 14323-14328 Dynamic evolution for liquid-state nuclear spins and Berry phase of mixed state in a magnetic	3.5	15 224 92
67 66 65 64	on electronic and magnetic properties. <i>Nano Energy</i> , 2012 , 1, 488-493 The nature of the atomic-level structure in the Cullr binary metallic glasses. <i>Intermetallics</i> , 2012 , 26, 8-10 Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7280 Hydrogen adsorption on and diffusion through MoS2 monolayer: First-principles study. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 14323-14328 Dynamic evolution for liquid-state nuclear spins and Berry phase of mixed state in a magnetic resonance. <i>Journal of Magnetic Resonance</i> , 2012 , 223, 25-30 Electronic and Magnetic Properties of Graphene/Fluorographene Superlattices. <i>Journal of Physical</i>	3.5 6.7	15 224 92 11
6766656463	on electronic and magnetic properties. <i>Nano Energy</i> , 2012 , 1, 488-493 The nature of the atomic-level structure in the Cull binary metallic glasses. <i>Intermetallics</i> , 2012 , 26, 8-10 Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons. <i>Journal of Materials Chemistry</i> , 2012 , 22, 7280 Hydrogen adsorption on and diffusion through MoS2 monolayer: First-principles study. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 14323-14328 Dynamic evolution for liquid-state nuclear spins and Berry phase of mixed state in a magnetic resonance. <i>Journal of Magnetic Resonance</i> , 2012 , 223, 25-30 Electronic and Magnetic Properties of Graphene/Fluorographene Superlattices. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 18278-18283 Symmetrical negative differential resistance behavior of a resistive switching device. <i>ACS Nano</i> ,	3.5 6.7 3 3.8	15 224 92 11 24

59	First-principles study on hydrogen storage by graphitic carbon nitride nanotubes. <i>International Journal of Hydrogen Energy</i> , 2012 , 37, 4170-4178	6.7	80
58	Effects of H-, N-, and (H, N)-Doping on the Photocatalytic Activity of TiO2. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 12224-12231	3.8	132
57	Ab Initio Study on a Novel Photocatalyst: Functionalized Graphitic Carbon Nitride Nanotube. <i>ACS Catalysis</i> , 2011 , 1, 99-104	13.1	94
56	Metal-functionalized single-walled graphitic carbon nitride nanotubes: a first-principles study on magnetic property. <i>Nanoscale Research Letters</i> , 2011 , 6, 97	5	18
55	Ab Initio Study on the Size and Chirality Effects on the Encapsulation of Tetrafluorotetracyano-p-quinodimethane inside Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 5280-5285	3.8	4
54	Controllable magnetic property of SiC by anion-cation codoping. <i>Applied Physics Letters</i> , 2010 , 96, 1925	19.4	25
53	Ab initio study on noncompensated CrO codoping of GaN for enhanced solar energy conversion. <i>Journal of Chemical Physics</i> , 2010 , 132, 104501	3.9	34
52	Enhancement of Hydrogen Evolution on Tungsten Doped Platinum. <i>Journal of Computational and Theoretical Nanoscience</i> , 2010 , 7, 547-551	0.3	6
51	Carbon nanotubes for supercapacitor. Nanoscale Research Letters, 2010 , 5, 654-68	5	515
50	Symmetry Properties of Single-Walled BC(2)N Nanotubes. <i>Nanoscale Research Letters</i> , 2009 , 4, 498-502	5	5
50 49	Symmetry Properties of Single-Walled BC(2)N Nanotubes. <i>Nanoscale Research Letters</i> , 2009 , 4, 498-502 Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting. <i>Applied Catalysis B: Environmental</i> , 2009 , 93, 90-95	21.8	5
	Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting.		
49	Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting. Applied Catalysis B: Environmental, 2009, 93, 90-95 Enhancement of room temperature ferromagnetism in C-doped ZnO films by nitrogen codoping.	21.8	52
49	Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting. Applied Catalysis B: Environmental, 2009, 93, 90-95 Enhancement of room temperature ferromagnetism in C-doped ZnO films by nitrogen codoping. Journal of Applied Physics, 2009, 105, 07C513 Phase-Dependent Photocatalytic Ability of TiO2: A First-Principles Study. Journal of Chemical	21.8	52 39
49 48 47	Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting. Applied Catalysis B: Environmental, 2009, 93, 90-95 Enhancement of room temperature ferromagnetism in C-doped ZnO films by nitrogen codoping. Journal of Applied Physics, 2009, 105, 07C513 Phase-Dependent Photocatalytic Ability of TiO2: A First-Principles Study. Journal of Chemical Theory and Computation, 2009, 5, 3074-8 Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping	21.8 2.5 6.4	52 39 64
49 48 47 46	Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting. Applied Catalysis B: Environmental, 2009, 93, 90-95 Enhancement of room temperature ferromagnetism in C-doped ZnO films by nitrogen codoping. Journal of Applied Physics, 2009, 105, 07C513 Phase-Dependent Photocatalytic Ability of TiO2: A First-Principles Study. Journal of Chemical Theory and Computation, 2009, 5, 3074-8 Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity. Physical Review Letters, 2009, 103, 226401 Semiconductor nanowires and nanotubes: effects of size and surface-to-volume ratio. ACS Nano,	21.82.56.47.4	523964325
49 48 47 46 45	Fabrication and characterization of brookite-rich, visible light-active TiO2 films for water splitting. Applied Catalysis B: Environmental, 2009, 93, 90-95 Enhancement of room temperature ferromagnetism in C-doped ZnO films by nitrogen codoping. Journal of Applied Physics, 2009, 105, 07C513 Phase-Dependent Photocatalytic Ability of TiO2: A First-Principles Study. Journal of Chemical Theory and Computation, 2009, 5, 3074-8 Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity. Physical Review Letters, 2009, 103, 226401 Semiconductor nanowires and nanotubes: effects of size and surface-to-volume ratio. ACS Nano, 2008, 2, 2410-4	21.8 2.5 6.4 7.4 16.7	52 39 64 325 107 28

41	Mechanism of ferromagnetism in nitrogen-doped ZnO: First-principle calculations. <i>Physical Review B</i> , 2008 , 78,	3.3	254
40	Boron nitride and carbon double-wall hetero-nanotubes: first-principles calculation of electronic properties. <i>Nanotechnology</i> , 2008 , 19, 095707	3.4	10
39	Electronic Structures of AlGaN2 Nanotubes and AlN-GaN Nanotube Superlattice. <i>Journal of Chemical Theory and Computation</i> , 2008 , 4, 703-7	6.4	22
38	Aging Time Effect on the Formation of Alumina Nanowires on AAO Templates. <i>Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry</i> , 2008 , 38, 469-474		5
37	A Simple Route to Growth of Silicon Nanowires. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 5787-5790	1.3	2
36	Magnetic Property of OH-Functionalized Single-Wall Carbon Nanotubes. <i>Journal of Computational and Theoretical Nanoscience</i> , 2008 , 5, 2233-2237	0.3	3
35	Ferromagnetism in ZnO Nanowires Derived from Electro-deposition on AAO Template and Subsequent Oxidation. <i>Advanced Materials</i> , 2008 , 20, 1170-1174	24	127
34	Citric acid functionalized carbon materials for fuel cell applications. <i>Journal of Power Sources</i> , 2008 , 176, 70-75	8.9	91
33	A simple route to growth of silicon nanowires. <i>Journal of Nanoscience and Nanotechnology</i> , 2008 , 8, 57	87±9,0	
32	Morphology Controllable ZnO Growth on Facet-Controlled Epitaxial Lateral Overgrown GaN/Sapphire Templates. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 6405-6410	3.8	11
31	Supercapacitor Electrodes from Tubes-in-Tube Carbon Nanostructures. <i>Chemistry of Materials</i> , 2007 , 19, 6120-6125	9.6	108
30	Characteristics of threading dislocations in ZnO grown on facet-controlled epitaxial overgrown GaN templates. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 356203	1.8	3
29	Room-temperature ferromagnetism in carbon-doped ZnO. <i>Physical Review Letters</i> , 2007 , 99, 127201	7.4	712
28	Channeling contrast microscopy of epitaxial lateral overgrowth of ZnO/GaN films. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2007 , 260, 299-303	1.2	
27	Catalyst-free template-synthesis of ZnO nanopetals at 60 degrees C. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 696-9	1.3	6
26	Hydrogen adsorption by tungsten carbide nanotube. <i>Applied Physics Letters</i> , 2007 , 90, 223104	3.4	31
25	Stimulated emission of CdS nanowires grown by thermal evaporation. <i>Applied Physics Letters</i> , 2007 , 91, 193105	3.4	25
24	Optical and magnetic properties of Ni-doped ZnO nanocones. <i>Journal of Nanoscience and Nanotechnology</i> , 2007 , 7, 3620-3	1.3	4

23	Structural Properties of ZnO Grown on GaNBapphire Templates. <i>Electrochemical and Solid-State Letters</i> , 2007 , 10, H98		8
22	Strong green luminescence of Mg-doped ZnO nanowires. <i>Journal of Nanoscience and Nanotechnology</i> , 2006 , 6, 2529-32	1.3	3
21	Orders of Magnitude Reduction in Threading Dislocations in ZnO Grown on Facet-Controlled GaN. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 957, 1		
20	Magnetic Properties of Highly-Ordered Ni, Co and Their Alloy Nanowires in AAO Templates. <i>Solid State Phenomena</i> , 2006 , 111, 123-126	0.4	4
19	Ab initio study of single-wall BC2N nanotubes. <i>Physical Review B</i> , 2006 , 74,	3.3	37
18	Optical limiting properties of metal nanowires. <i>Applied Physics Letters</i> , 2006 , 88, 223106	3.4	95
17	Hydrogen storage of ZnO and Mg doped ZnO nanowires. <i>Nanotechnology</i> , 2006 , 17, 2963-2967	3.4	63
16	First-principles study of optical spectra of single-wall BC2N nanotubes. <i>Physical Review B</i> , 2006 , 73,	3.3	29
15	Electroluminescence and field emission of Mg-doped ZnO tetrapods. <i>Nanotechnology</i> , 2006 , 17, 5096-5	19.4	29
14	Ab initiostudy of F- and Cl-functionalized single wall carbon nanotubes. <i>Journal of Physics Condensed Matter</i> , 2006 , 18, 5175-5184	1.8	13
13	Enhancement of minority-carrier lifetime by an advanced high temperature annealing method. <i>Thin Solid Films</i> , 2006 , 504, 129-131	2.2	
12	Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet. <i>Physical Review B</i> , 2005 , 72,	3.3	75
11	Single-crystal growth of metallic nanowires with preferred orientation. <i>Nanotechnology</i> , 2005 , 16, 1559	-3.5464	85
10	Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 3094-8	3.4	231
9	Growth of Si nanowires by thermal evaporation. <i>Nanotechnology</i> , 2005 , 16, 417-421	3.4	73
8	Photoluminescence and optical limiting properties of silicon nanowires. <i>Journal of Nanoscience and Nanotechnology</i> , 2005 , 5, 733-7	1.3	10
7	Optical and field emission properties of Zinc Oxide nanostructures. <i>Journal of Nanoscience and Nanotechnology</i> , 2005 , 5, 1683-7	1.3	10
6	Highly ordered carbon nanotubes based on porous aluminum oxide. <i>Journal of Nanoscience and Nanotechnology</i> , 2004 , 4, 1014-8	1.3	5

		Пυ	IFAN
5	The growth of carbon nanotubes at predefined locations using whole nickel nanowires as templates. <i>Chemical Physics Letters</i> , 2004 , 393, 511-516	2.5	2
4	Electrical-bridge model on the self-organized growth of nanopores in anodized aluminum oxide. <i>IEEE Nanotechnology Magazine</i> , 2004 , 3, 462-467	2.6	18
3	Ab initio study of OH-functionalized single-wall carbon nanotubes. <i>Physical Review B</i> , 2004 , 70,	3.3	50
2	Anodized Steel: The Most Promising Bifunctional Electrocatalyst for Alkaline Water Electrolysis in Industry. <i>Advanced Functional Materials</i> ,2202068	15.6	6

6.8

Ο

Wafer-Scale 2H-MoS 2 Monolayer for High Surface-enhanced Raman Scattering Performance: Charge-Transfer Coupled with Molecule Resonance. *Advanced Materials Technologies*,2200217

1