Cheng Hao Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5513498/publications.pdf Version: 2024-02-01

CHENC HAO WU

#	Article	IF	CITATIONS
1	Stabilization of a nanoporous NiCu dilute alloy catalyst for non-oxidative ethanol dehydrogenation. Catalysis Science and Technology, 2020, 10, 5207-5217.	4.1	17
2	CO Oxidation Mechanisms on CoO _{<i>x</i>} -Pt Thin Films. Journal of the American Chemical Society, 2020, 142, 8312-8322.	13.7	39
3	Bimetallic synergy in cobalt–palladium nanocatalysts for CO oxidation. Nature Catalysis, 2019, 2, 78-85.	34.4	195
4	X-ray-Induced Fragmentation of Imidazolium-Based Ionic Liquids Studied by Soft X-ray Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 785-790.	4.6	14
5	Environment-Dependent Radiation Damage in Atmospheric Pressure X-ray Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 737-744.	2.6	30
6	Strong O 2p–Fe 3d Hybridization Observed in Solution-Grown Hematite Films by Soft X-ray Spectroscopies. Journal of Physical Chemistry B, 2018, 122, 927-932.	2.6	18
7	Molecular-Scale Structure of Electrode–Electrolyte Interfaces: The Case of Platinum in Aqueous Sulfuric Acid. Journal of the American Chemical Society, 2018, 140, 16237-16244.	13.7	32
8	Structure of Copper–Cobalt Surface Alloys in Equilibrium with Carbon Monoxide Gas. Journal of the American Chemical Society, 2018, 140, 6575-6581.	13.7	23
9	Using soft x-ray absorption spectroscopy to characterize electrode/electrolyte interfaces in-situ and operando. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221, 2-9.	1.7	25
10	Electronic Structure, Optoelectronic Properties, and Photoelectrochemical Characteristics of γ-Cu ₃ V ₂ O ₈ Thin Films. Chemistry of Materials, 2017, 29, 3334-3345.	6.7	60
11	Synthesis of Pt ₃ Y and Other Early–Late Intermetallic Nanoparticles by Way of a Molten Reducing Agent. Journal of the American Chemical Society, 2017, 139, 5672-5675.	13.7	77
12	Ambient-Pressure X-ray Photoelectron Spectroscopy Study of Cobalt Foil Model Catalyst under CO, H ₂ , and Their Mixtures. ACS Catalysis, 2017, 7, 1150-1157.	11.2	50
13	(Invited) In-Situ /Operando X-Ray Absorption Spectroscopy Technique for the Characterization of Electrode/Electrolyte Interfaces. ECS Meeting Abstracts, 2017, , .	0.0	0
14	Structure and Dynamics of Reactant Coadsorption on Single Crystal Model Catalysts by HP-STM and AP-XPS: A Mini Review. Topics in Catalysis, 2016, 59, 405-419.	2.8	14
15	What Limits the Performance of Ta3N5 for Solar Water Splitting?. CheM, 2016, 1, 640-655.	11.7	143
16	Activation of Cu(111) surface by decomposition into nanoclusters driven by CO adsorption. Science, 2016, 351, 475-478.	12.6	245
17	Advanced Materials and Nanotechnology for Sustainable Energy Development. Journal of Nanotechnology, 2015, 2015, 1-1.	3.4	1
18	Stable Cobalt Nanoparticles and Their Monolayer Array as an Efficient Electrocatalyst for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2015, 137, 7071-7074.	13.7	299

CHENG HAO WU

#	Article	IF	CITATIONS
19	Synthesis and Structural Evolution of Nickel-Cobalt Nanoparticles Under H ₂ and CO ₂ . Small, 2015, 11, 3045-3053.	10.0	42
20	Interrelationships among Grain Size, Surface Composition, Air Stability, and Interfacial Resistance of Al-Substituted Li ₇ La ₃ Zr ₂ O ₁₂ Solid Electrolytes. ACS Applied Materials & Interfaces, 2015, 7, 17649-17655.	8.0	220
21	Reaction of CO with Preadsorbed Oxygen on Low-Index Copper Surfaces: An Ambient Pressure X-ray Photoelectron Spectroscopy and Scanning Tunneling Microscopy Study. Journal of Physical Chemistry C, 2015, 119, 14669-14674.	3.1	43
22	Thermal Stability of Core–Shell Nanoparticles: A Combined in Situ Study by XPS and TEM. Chemistry of Materials, 2015, 27, 6960-6968.	6.7	70
23	Probing electrode/electrolyte interfaces in situ by X-ray spectroscopies: old methods, new tricks. Physical Chemistry Chemical Physics, 2015, 17, 30229-30239.	2.8	83
24	Capturing interfacial photoelectrochemical dynamics with picosecond time-resolved X-ray photoelectron spectroscopy. Faraday Discussions, 2014, 171, 219-241.	3.2	28
25	Polarized X-ray Absorption Spectroscopy Observation of Electronic and Structural Changes of Chemical Vapor Deposition Graphene in Contact with Water. Journal of Physical Chemistry C, 2014, 118, 25456-25459.	3.1	23
26	The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy. Science, 2014, 346, 831-834.	12.6	391
27	All Inorganic Semiconductor Nanowire Mesh for Direct Solar Water Splitting. ACS Nano, 2014, 8, 11739-11744.	14.6	67
28	X-ray Absorption Spectra of Dissolved Polysulfides in Lithium–Sulfur Batteries from First-Principles. Journal of Physical Chemistry Letters, 2014, 5, 1547-1551.	4.6	134
29	Influence of Step Geometry on the Reconstruction of Stepped Platinum Surfaces under Coadsorption of Ethylene and CO. Journal of Physical Chemistry Letters, 2014, 5, 2626-2631.	4.6	16
30	Organometallic Ruthenium Nanoparticles as Model Catalysts for CO Hydrogenation: A Nuclear Magnetic Resonance and Ambient-Pressure X-ray Photoelectron Spectroscopy Study. ACS Catalysis, 2014, 4, 3160-3168.	11.2	42
31	Fingerprinting Lithium-Sulfur Battery Reaction Products by X-ray Absorption Spectroscopy. Journal of the Electrochemical Society, 2014, 161, A1100-A1106.	2.9	76
32	Toward Ultrafast In Situ X-Ray Studies of Interfacial Photoelectrochemistry. , 2014, , .		0
33	Ta ₃ N ₅ Nanowire Bundles as Visibleâ€Lightâ€Responsive Photoanodes. Chemistry - an Asian Journal, 2013, 8, 2354-2357.	3.3	17
34	Si/InGaN Core/Shell Hierarchical Nanowire Arrays and their Photoelectrochemical Properties. Nano Letters, 2012, 12, 1678-1682.	9.1	209
35	Epitaxial Growth of InGaN Nanowire Arrays for Light Emitting Diodes. ACS Nano, 2011, 5, 3970-3976.	14.6	118
36	Goldâ€Based Hybrid Nanocrystals Through Heterogeneous Nucleation and Growth. Advanced Materials, 2010, 22, 1936-1940.	21.0	96