
## Robert E Widdop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5513471/publications.pdf Version: 2024-02-01



ROBERT F WIDDOR

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Preclinical rodent models of cardiac fibrosis. British Journal of Pharmacology, 2022, 179, 882-899.                                                                                                                                                           | 5.4 | 12        |
| 2  | Optimising the photothrombotic model of stroke in the C57BI/6 and FVB/N strains of mouse. Scientific Reports, 2022, 12, 7598.                                                                                                                                 | 3.3 | 7         |
| 3  | N-(Methyloxycarbonyl)thiophene sulfonamides as high affinity AT2 receptor ligands. Bioorganic and<br>Medicinal Chemistry, 2021, 29, 115859.                                                                                                                   | 3.0 | 6         |
| 4  | Combining mesenchymal stem cells with serelaxin provides enhanced renoprotection against<br>1K/DOCA/saltâ€induced hypertension. British Journal of Pharmacology, 2021, 178, 1164-1181.                                                                        | 5.4 | 12        |
| 5  | Assessment of renal fibrosis and antiâ€fibrotic agents using a novel diagnostic and stainâ€free<br>secondâ€harmonic generation platform. FASEB Journal, 2021, 35, e21595.                                                                                     | 0.5 | 8         |
| 6  | In Aged Females, the Enhanced Pressor Response to Angiotensin II Is Attenuated By Estrogen<br>Replacement via an Angiotensin Type 2 Receptor-Mediated Mechanism. Hypertension, 2021, 78, 128-137.                                                             | 2.7 | 9         |
| 7  | Using conformational constraints at position 6 of Angiotensin II to generate compounds with<br>enhanced AT2R selectivity and proteolytic stability. Bioorganic and Medicinal Chemistry Letters, 2021,<br>43, 128086.                                          | 2.2 | 1         |
| 8  | Relaxin Attenuates Organ Fibrosis via an Angiotensin Type 2 Receptor Mechanism in Aged Hypertensive<br>Female Rats. Kidney360, 2021, 2, 1781-1792.                                                                                                            | 2.1 | 7         |
| 9  | Comparing the renoprotective effects of BM-MSCs versus BM-MSC-exosomes, when combined with an anti-fibrotic drug, in hypertensive mice. Biomedicine and Pharmacotherapy, 2021, 144, 112256.                                                                   | 5.6 | 8         |
| 10 | Esterase-Mediated Sustained Release of Peptide-Based Therapeutics from a Self-Assembled Injectable<br>Hydrogel. ACS Applied Materials & Interfaces, 2021, 13, 58279-58290.                                                                                    | 8.0 | 11        |
| 11 | Enhancement of glioblastoma multiforme therapy through a novel Quercetin-Losartan hybrid. Free<br>Radical Biology and Medicine, 2020, 160, 391-402.                                                                                                           | 2.9 | 16        |
| 12 | Single Peptide Backbone Surrogate Mutations to Regulate Angiotensin GPCR Subtype Selectivity.<br>Chemistry - A European Journal, 2020, 26, 10690-10694.                                                                                                       | 3.3 | 7         |
| 13 | Serelaxin and the AT <sub>2</sub> Receptor Agonist CGP42112 Evoked a Similar, Nonadditive, Cardiac<br>Antifibrotic Effect in High Salt-Fed Mice That Were Refractory to Candesartan Cilexetil. ACS<br>Pharmacology and Translational Science, 2020, 3, 76-87. | 4.9 | 15        |
| 14 | The antiâ€fibrotic actions of relaxin are mediated through AT <sub>2</sub> Râ€associated protein<br>phosphatases via RXFP1â€AT <sub>2</sub> R functional crosstalk in human cardiac myofibroblasts. FASEB<br>Journal, 2020, 34, 8217-8233.                    | 0.5 | 18        |
| 15 | Renal functional effects of the highly selective AT2R agonist, β-Pro7 Ang III, in normotensive rats.<br>Clinical Science, 2020, 134, 871-884.                                                                                                                 | 4.3 | 15        |
| 16 | A Series of Analogues to the AT <sub>2</sub> R Prototype Antagonist C38 Allow Fine Tuning of the Previously Reported Antagonist Binding Mode. ChemistryOpen, 2019, 8, 114-125.                                                                                | 1.9 | 8         |
| 17 | AT1R-AT2R-RXFP1 Functional Crosstalk in Myofibroblasts: Impact on the Therapeutic Targeting of Renal and Cardiac Fibrosis. Journal of the American Society of Nephrology: JASN, 2019, 30, 2191-2207.                                                          | 6.1 | 35        |
| 18 | A Novel Epigenetic Drug-Eluting Balloon Angioplasty Device: Evaluation in a Large Animal Model of<br>Neointimal Hyperplasia. Cardiovascular Drugs and Therapy, 2019, 33, 687-692.                                                                             | 2.6 | 3         |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Dapagliflozin attenuates human vascular endothelial cell activation and induces vasorelaxation: A<br>potential mechanism for inhibition of atherogenesis. Diabetes and Vascular Disease Research, 2018, 15,<br>64-73.                      | 2.0 | 82        |
| 20 | Morphology and Function of the Lamb lleum following Preterm Birth. Frontiers in Pediatrics, 2018, 6,<br>8.                                                                                                                                 | 1.9 | 7         |
| 21 | CCL18 as a potential mediator of the pro-fibrotic actions of M2 macrophages in the vessel wall during hypertension. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, OR1-4.                          | 0.0 | 0         |
| 22 | Potent neuroprotection after stroke afforded by a double-knot spider-venom peptide that inhibits<br>acid-sensing ion channel 1a. Proceedings of the National Academy of Sciences of the United States of<br>America, 2017, 114, 3750-3755. | 7.1 | 180       |
| 23 | The effect of tocopheryl phosphates (TPM) on the development of atherosclerosis in apolipoproteinâ€E<br>deficient mice. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 107-116.                                          | 1.9 | 12        |
| 24 | Anti-fibrotic Potential of AT2 Receptor Agonists. Frontiers in Pharmacology, 2017, 8, 564.                                                                                                                                                 | 3.5 | 58        |
| 25 | Novel approaches for treating hypertension. F1000Research, 2017, 6, 80.                                                                                                                                                                    | 1.6 | 5         |
| 26 | Decorated self-assembling β <sup>3</sup> -tripeptide foldamers form cell adhesive scaffolds. Chemical Communications, 2016, 52, 4549-4552.                                                                                                 | 4.1 | 29        |
| 27 | Angiotensin AT2-receptor stimulation improves survival and neurological outcome after experimental stroke in mice. Journal of Molecular Medicine, 2016, 94, 957-966.                                                                       | 3.9 | 39        |
| 28 | Compound 21, a selective agonist of angiotensin AT <sub>2</sub> receptors, prevents endothelial<br>inflammation and leukocyte adhesion <i>in vitro</i> and <i>in vivo</i> . British Journal of<br>Pharmacology, 2016, 173, 729-740.        | 5.4 | 51        |
| 29 | Molecular and cellular mechanisms of glucagon-like peptide-1 receptor agonist-mediated attenuation of cardiac fibrosis. Diabetes and Vascular Disease Research, 2016, 13, 56-68.                                                           | 2.0 | 34        |
| 30 | β-Pro7Ang III is a novel highly selective angiotensin II type 2 receptor (AT2R) agonist, which acts as a<br>vasodepressor agent via the AT2R in conscious spontaneously hypertensive rats. Clinical Science, 2015,<br>129, 505-513.        | 4.3 | 34        |
| 31 | Structural determinants for binding to angiotensin converting enzyme 2 (ACE2) and angiotensin receptors 1 and 2. Frontiers in Pharmacology, 2015, 6, 5.                                                                                    | 3.5 | 17        |
| 32 | PcTx1 affords neuroprotection in a conscious model of stroke in hypertensive rats via selective inhibition of ASIC1a. Neuropharmacology, 2015, 99, 650-657.                                                                                | 4.1 | 55        |
| 33 | Effect of a Selective Mas Receptor Agonist in Cerebral Ischemia In Vitro and In Vivo. PLoS ONE, 2015, 10, e0142087.                                                                                                                        | 2.5 | 26        |
| 34 | Direct Angiotensin AT2 Receptor Stimulation Using a Novel AT2 Receptor Agonist, Compound 21, Evokes<br>Neuroprotection in Conscious Hypertensive Rats. PLoS ONE, 2014, 9, e95762.                                                          | 2.5 | 72        |
| 35 | Differential Phenotypes of Tissue-Infiltrating T Cells during Angiotensin II-Induced Hypertension in<br>Mice. PLoS ONE, 2014, 9, e114895.                                                                                                  | 2.5 | 40        |
| 36 | Pressor responsiveness to angiotensin II in female mice is enhanced with age: role of the angiotensin type 2 receptor. Biology of Sex Differences, 2014, 5, 13.                                                                            | 4.1 | 30        |

| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Angiotensin Type 2 Receptor Stimulation Increases Renal Function in Female, but Not Male,<br>Spontaneously Hypertensive Rats. Hypertension, 2014, 64, 378-383.                                                                                                      | 2.7 | 49        |
| 38 | Sex- and age-related differences in the chronic pressure-natriuresis relationship: role of the angiotensin type 2 receptor. American Journal of Physiology - Renal Physiology, 2014, 307, F901-F907.                                                                | 2.7 | 55        |
| 39 | Relaxin requires the angiotensin II type 2 receptor to abrogate renal interstitial fibrosis. Kidney<br>International, 2014, 86, 75-85.                                                                                                                              | 5.2 | 98        |
| 40 | Role of Inflammation and the Angiotensin Type 2 Receptor in the Regulation of Arterial Pressure<br>During Pregnancy in Mice. Hypertension, 2014, 64, 626-631.                                                                                                       | 2.7 | 20        |
| 41 | Electronic Sculpting of Ligand-GPCR Subtype Selectivity: The Case of Angiotensin II. ACS Chemical Biology, 2014, 9, 1420-1425.                                                                                                                                      | 3.4 | 31        |
| 42 | Serelaxin Is a More Efficacious Antifibrotic Than Enalapril in an Experimental Model of Heart Disease.<br>Hypertension, 2014, 64, 315-322.                                                                                                                          | 2.7 | 86        |
| 43 | Update on the Angiotensin AT2 Receptor. Current Hypertension Reports, 2013, 15, 25-30.                                                                                                                                                                              | 3.5 | 51        |
| 44 | Brain and retinal microglia in health and disease: An unrecognized target of the renin–angiotensin<br>system. Clinical and Experimental Pharmacology and Physiology, 2013, 40, 571-579.                                                                             | 1.9 | 32        |
| 45 | Protective arms of the renin–angiotensinâ€system in neurological disease. Clinical and Experimental<br>Pharmacology and Physiology, 2013, 40, 580-588.                                                                                                              | 1.9 | 75        |
| 46 | Direct AT2 receptor stimulation is athero-protective and stabilizes plaque in Apolipoprotein<br>E-deficient mice. International Journal of Cardiology, 2013, 169, 281-287.                                                                                          | 1.7 | 25        |
| 47 | The GLP-1 receptor agonist liraglutide inhibits progression of vascular disease via effects on<br>atherogenesis, plaque stability and endothelial function in an ApoE <sup>â^'/â^'</sup> mouse model.<br>Diabetes and Vascular Disease Research, 2013, 10, 353-360. | 2.0 | 121       |
| 48 | Differential roles for tissueâ€infiltrating T cells during angiotensin IIâ€induced hypertension. FASEB<br>Journal, 2013, 27, 708.6.                                                                                                                                 | 0.5 | 0         |
| 49 | Angiotensin II Type 2 Receptor Stimulation Initiated After Stroke Causes Neuroprotection in Conscious<br>Rats. Hypertension, 2012, 60, 1531-1537.                                                                                                                   | 2.7 | 54        |
| 50 | Sex Differences in the Pressor and Tubuloglomerular Feedback Response to Angiotensin II.<br>Hypertension, 2012, 59, 129-135.                                                                                                                                        | 2.7 | 84        |
| 51 | Reversal of Vascular Macrophage Accumulation and Hypertension by a CCR2 Antagonist in Deoxycorticosterone/Salt-Treated Mice. Hypertension, 2012, 60, 1207-1212.                                                                                                     | 2.7 | 103       |
| 52 | Ganging up on Angiotensin II Type 1 Receptors in Vascular Remodeling. Hypertension, 2012, 60, 17-19.                                                                                                                                                                | 2.7 | 8         |
| 53 | Sex-Specific Influence of Angiotensin Type 2 Receptor Stimulation on Renal Function. Hypertension, 2012, 59, 409-414.                                                                                                                                               | 2.7 | 95        |
| 54 | Neuroprotective effect of an angiotensin receptor type 2 agonist following cerebral ischemia in vitro and in vivo. Experimental & Translational Stroke Medicine, 2012, 4, 16.                                                                                       | 3.2 | 29        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Non-peptide AT2-receptor agonists. Current Opinion in Pharmacology, 2011, 11, 187-192.                                                                                                                                      | 3.5 | 96        |
| 56 | The effects of B-HT 920 and St 91 on venous haemodynamics in cats. Journal of Pharmacy and Pharmacology, 2011, 41, 55-56.                                                                                                   | 2.4 | 1         |
| 57 | <i>î²</i> â€amino acid substitution to investigate the recognition of angiotensin II (AngII) by angiotensin converting enzyme 2 (ACE2). Journal of Molecular Recognition, 2011, 24, 235-244.                                | 2.1 | 5         |
| 58 | Gender Differences in Pressure-Natriuresis and Renal Autoregulation. Hypertension, 2011, 57, 275-282.                                                                                                                       | 2.7 | 112       |
| 59 | A GLP-1 receptor agonist liraglutide inhibits endothelial cell dysfunction and vascular adhesion<br>molecule expression in an ApoE <sup>-/-</sup> mouse model. Diabetes and Vascular Disease Research,<br>2011, 8, 117-124. | 2.0 | 152       |
| 60 | A Single β-Amino Acid Substitution to Angiotensin II Confers AT <sub>2</sub> Receptor Selectivity and<br>Vascular Function. Hypertension, 2011, 57, 570-576.                                                                | 2.7 | 51        |
| 61 | Chronic Administration of the HNO Donor Angeli's Salt Does Not Lead to Tolerance, Cross-Tolerance, or Endothelial Dysfunction: Comparison with GTN and DEA/NO. Antioxidants and Redox Signaling, 2011, 14, 1615-1624.       | 5.4 | 35        |
| 62 | Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clinical Science, 2011, 121, 297-303.                                                                                                 | 4.3 | 241       |
| 63 | Vasoprotective and Atheroprotective Effects of Angiotensin (1-7) in Apolipoprotein E–Deficient Mice.<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1606-1613.                                            | 2.4 | 145       |
| 64 | Angiotensin AT <sub>2</sub> Receptor Stimulation Causes Neuroprotection in a Conscious Rat Model of Stroke. Stroke, 2009, 40, 1482-1489.                                                                                    | 2.0 | 101       |
| 65 | Functional Cardiovascular Effects of Angiotensin Peptides: Focus on Atherosclerosis and Hypertension. Current Hypertension Reviews, 2009, 5, 227-236.                                                                       | 0.9 | 4         |
| 66 | Response to Letter by Tsuda. Stroke, 2009, 40, .                                                                                                                                                                            | 2.0 | 1         |
| 67 | VASCULAR ANGIOTENSIN AT2RECEPTORS IN HYPERTENSION AND AGEING. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 386-390.                                                                                     | 1.9 | 35        |
| 68 | SEXâ€DIFFERENCES IN CIRCADIAN BLOOD PRESSURE VARIATIONS IN RESPONSE TO CHRONIC ANGIOTENSIN II INFUSION IN RATS. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 391-395.                                   | 1.9 | 19        |
| 69 | EARLY ORIGINS OF CARDIAC HYPERTROPHY: DOES CARDIOMYOCYTE ATTRITION PROGRAMME FOR<br>PATHOLOGICAL â€~CATCHâ€UP' GROWTH OF THE HEART?. Clinical and Experimental Pharmacology and<br>Physiology, 2008, 35, 1358-1364.         | 1.9 | 53        |
| 70 | Nitroxyl (HNO): the Cinderella of the nitric oxide story. Trends in Pharmacological Sciences, 2008, 29, 601-608.                                                                                                            | 8.7 | 243       |
| 71 | Angiotensin IV-evoked vasoprotection is conserved in advanced atheroma. Atherosclerosis, 2008, 200, 37-44.                                                                                                                  | 0.8 | 24        |
| 72 | Enhanced Angiotensin II Type 2 Receptor Mechanisms Mediate Decreases in Arterial Pressure<br>Attributable to Chronic Low-Dose Angiotensin II in Female Rats. Hypertension, 2008, 52, 666-671.                               | 2.7 | 143       |

| #  | Article                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Chronic angiotensin IV treatment reverses endothelial dysfunction in ApoE-deficient mice.<br>Cardiovascular Research, 2008, 77, 178-187.                                                                                                                                              | 3.8 | 71        |
| 74 | Response to Can the Study of Female Rats Help Our Understanding of Women?. Hypertension, 2008, 52, .                                                                                                                                                                                  | 2.7 | 0         |
| 75 | A Novel Histone Deacetylase Inhibitor Reduces Abdominal Aortic Aneurysm Formation in Angiotensin<br>II-Infused Apolipoprotein E-Deficient Mice. Journal of Vascular Research, 2008, 45, 143-152.                                                                                      | 1.4 | 51        |
| 76 | Antiâ€atherosclerotic effects of the hexapeptide angiotensin IV. FASEB Journal, 2008, 22, 639-639.                                                                                                                                                                                    | 0.5 | 0         |
| 77 | Nitroxyl Anion Donor, Angeli's Salt, Does Not Develop Tolerance in Rat Isolated Aortae. Hypertension,<br>2007, 49, 885-892.                                                                                                                                                           | 2.7 | 102       |
| 78 | Immunolocalization of ACE2 and AT2 Receptors in Rabbit Atherosclerotic Plaques. Journal of<br>Histochemistry and Cytochemistry, 2006, 54, 147-150.                                                                                                                                    | 2.5 | 57        |
| 79 | AT2 receptors mediate tonic renal medullary vasoconstriction in renovascular hypertension. British<br>Journal of Pharmacology, 2005, 144, 486-492.                                                                                                                                    | 5.4 | 25        |
| 80 | Differential cardiovascular responses to stressors in hypertensive and normotensive rats.<br>Experimental Physiology, 2005, 90, 141-150.                                                                                                                                              | 2.0 | 53        |
| 81 | Angiotensin-(1–7) Acts as a Vasodepressor Agent Via Angiotensin II Type 2 Receptors in Conscious Rats.<br>Hypertension, 2005, 45, 960-966.                                                                                                                                            | 2.7 | 183       |
| 82 | High Blood Pressure Reduction Reverses Angiotensin II Type 2 Receptor–Mediated Vasoconstriction<br>Into Vasodilation in Spontaneously Hypertensive Rats. Circulation, 2005, 111, 1006-1011.                                                                                           | 1.6 | 98        |
| 83 | Differential gene expression in WKY and SHR brain following acute and chronic air-puff stress.<br>Molecular Brain Research, 2005, 133, 329-336.                                                                                                                                       | 2.3 | 17        |
| 84 | Central autonomic integration of psychological stressors: Focus on cardiovascular modulation.<br>Autonomic Neuroscience: Basic and Clinical, 2005, 123, 1-11.                                                                                                                         | 2.8 | 45        |
| 85 | Medial prefrontal cortical integration of psychological stress in rats. European Journal of Neuroscience, 2004, 20, 2430-2440.                                                                                                                                                        | 2.6 | 60        |
| 86 | Differential regulation by AT1 and AT2 receptors of angiotensin II-stimulated cyclic GMP production in rat uterine artery and aorta. British Journal of Pharmacology, 2004, 141, 1024-1031.                                                                                           | 5.4 | 14        |
| 87 | AT <sub>2</sub> receptorâ€mediated vasodilatation is unmasked by AT <sub>1</sub> receptor blockade in conscious SHR. British Journal of Pharmacology, 2004, 142, 821-830.                                                                                                             | 5.4 | 72        |
| 88 | Vascular angiotensin II actions mediated by angiotensin II type 2 receptors. Current Hypertension Reports, 2004, 6, 117-123.                                                                                                                                                          | 3.5 | 12        |
| 89 | Angiotensin AT receptor contributes to cardiovascular remodelling of aged rats during chronic AT<br>receptor blockade. Journal of Molecular and Cellular Cardiology, 2004, 37, 1023-1030.                                                                                             | 1.9 | 81        |
| 90 | Localization of AT2 receptors in the nucleus of the solitary tract of spontaneously hypertensive and<br>Wistar Kyoto rats using [1251] CGP42112: upregulation of a non-angiotensin II binding site following<br>unilateral nodose ganglionectomy. Brain Research, 2003, 968, 139-155. | 2.2 | 14        |

| #   | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Angiotensin AT2receptors: cardiovascular hope or hype?. British Journal of Pharmacology, 2003, 140, 809-824.                                                                                                                                                                  | 5.4 | 201       |
| 92  | Functional role of angiotensin II AT2 receptor in modulation of AT1 receptor-mediated contraction in rat uterine artery: involvement of bradykinin and nitric oxide. British Journal of Pharmacology, 2003, 140, 987-995.                                                     | 5.4 | 80        |
| 93  | High Methionine and Cholesterol Diet Abolishes Endothelial Relaxation. Arteriosclerosis,<br>Thrombosis, and Vascular Biology, 2003, 23, 1358-1363.                                                                                                                            | 2.4 | 48        |
| 94  | Disparate Roles of AT 2 Receptors in the Renal Cortical and Medullary Circulations of Anesthetized Rabbits. Hypertension, 2003, 42, 200-205.                                                                                                                                  | 2.7 | 42        |
| 95  | AT <sub>2</sub> Receptor-Mediated Relaxation Is Preserved After Long-Term AT <sub>1</sub> Receptor<br>Blockade. Hypertension, 2002, 40, 516-520.                                                                                                                              | 2.7 | 146       |
| 96  | Pharmacodynamic Contribution to the Vasodilator Effect of Chronic AT 1 Receptor Blockade in SHR.<br>Hypertension, 2001, 37, 91-98.                                                                                                                                            | 2.7 | 6         |
| 97  | Characterisation of vasopressin V1A, angiotensin AT1 and AT2 receptor distribution and density in normotensive and hypertensive rat brain stem and kidney: effects of restraint stress11Published on the World Wide Web on 2 October 2000 Brain Research, 2000, 883, 148-156. | 2.2 | 22        |
| 98  | Restraint Stress. Hypertension, 2000, 35, 126-129.                                                                                                                                                                                                                            | 2.7 | 113       |
| 99  | Vasopressin V2 receptor enhances gain of baroreflex in conscious spontaneously hypertensive rats.<br>American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276,<br>R872-R879.                                                             | 1.8 | 13        |
| 100 | Cardiovascular Effects of Angiotensin-(1–7) in Conscious Spontaneously Hypertensive Rats.<br>Hypertension, 1999, 34, 964-968.                                                                                                                                                 | 2.7 | 52        |
| 101 | AT <sub>2</sub> Receptor Stimulation Enhances Antihypertensive Effect of AT <sub>1</sub> Receptor Antagonist in Hypertensive Rats. Hypertension, 1999, 34, 1112-1116.                                                                                                         | 2.7 | 137       |
| 102 | Type I and II metabotropic glutamate receptor agonists and antagonists evoke cardiovascular effects<br>after intrathecal administration in conscious rats. British Journal of Pharmacology, 1999, 128, 823-829.                                                               | 5.4 | 10        |
| 103 | Modulation of AT <sub>1</sub> receptorâ€mediated contraction of rat uterine artery by AT <sub>2</sub> receptors. British Journal of Pharmacology, 1998, 125, 1429-1436.                                                                                                       | 5.4 | 43        |
| 104 | A comparison of the development of renal hypertension in male and female rats. Clinical Science, 1998, 95, 445-451.                                                                                                                                                           | 4.3 | 16        |
| 105 | A Simple Versatile Method for Measuring Tail Cuff Systolic Blood Pressure in Conscious Rats. Clinical Science, 1997, 93, 191-194.                                                                                                                                             | 4.3 | 42        |
| 106 | ROLE OF THE BRAIN RENIN-ANGIOTENSIN SYSTEM IN THE MAINTENANCE OF BLOOD PRESSURE IN CONSCIOUS SPONTANEOUSLY HYPERTENSIVE AND SINOAORTIC BARORECEPTOR-DENERVATED RATS. Clinical and Experimental Pharmacology and Physiology, 1997, 24, 667-672.                                | 1.9 | 6         |
| 107 | Angiotensin Type I Receptor Antagonists CY-11974 and EXP 3174 Cause Selective Renal Vasodilatation in Conscious Spontaneously Hypertensive Rats. Clinical Science, 1996, 91, 147-154.                                                                                         | 4.3 | 16        |
| 108 | Electrophysiological studies of the cholecystokininA receptor antagonists SR27897B and PD140548 in the rat isolated nodose ganglion. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 353, 693-697.                                                                      | 3.0 | 7         |

| #   | Article                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Regional Hemodynamic Effects of the AT 1 Receptor Antagonist CV-11974 in Conscious Renal<br>Hypertensive Rats. Hypertension, 1995, 26, 989-997.                                   | 2.7 | 17        |
| 110 | Electrophysiological and autoradiographical evidence for cholecystokinin A receptors on rat<br>isolated nodose ganglia. Journal of the Autonomic Nervous System, 1994, 46, 65-73. | 1.9 | 32        |
| 111 | Effects of angiotensin II AT1- or AT2-receptor antagonists on drinking evoked by angiotensin II or water deprivation in rats. Brain Research, 1994, 648, 46-52.                   | 2.2 | 19        |
| 112 | Intrathecal kynurenate reduces arterial pressure, heart rate and baroreceptor-heart rate reflex in conscious rats. Neuroscience Letters, 1990, 114, 309-315.                      | 2.1 | 26        |
| 113 | Postjunctional α <sub>2</sub> â€adrenoceptors mediate venoconstriction in the hindquarters circulation of anaesthetized cats. British Journal of Pharmacology, 1987, 92, 121-128. | 5.4 | 10        |
| 114 | Non-invasive tests of neurovascular function: Reduced responses in diabetes mellitus. Neuroscience<br>Letters, 1987, 81, 177-182.                                                 | 2.1 | 36        |