Chia-Feng Tsai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5513309/publications.pdf

Version: 2024-02-01

33 papers

2,084 citations

304743 22 h-index 31 g-index

40 all docs

40 docs citations

40 times ranked

2989 citing authors

#	Article	IF	CITATIONS
1	Proteogenomic Characterization of Endometrial Carcinoma. Cell, 2020, 180, 729-748.e26.	28.9	296
2	High-Throughput Single Cell Proteomics Enabled by Multiplex Isobaric Labeling in a Nanodroplet Sample Preparation Platform. Analytical Chemistry, 2019, 91, 13119-13127.	6.5	156
3	Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nature Communications, 2015, 6, 6622.	12.8	139
4	Immobilized Metal Affinity Chromatography Revisited: pH/Acid Control toward High Selectivity in Phosphoproteomics. Journal of Proteome Research, 2008, 7, 4058-4069.	3.7	125
5	An Improved Boosting to Amplify Signal with Isobaric Labeling (iBASIL) Strategy for Precise Quantitative Single-cell Proteomics. Molecular and Cellular Proteomics, 2020, 19, 828-838.	3.8	121
6	IDEAL-Q, an Automated Tool for Label-free Quantitation Analysis Using an Efficient Peptide Alignment Approach and Spectral Data Validation. Molecular and Cellular Proteomics, 2010, 9, 131-144.	3.8	114
7	Automated Coupling of Nanodroplet Sample Preparation with Liquid Chromatography–Mass Spectrometry for High-Throughput Single-Cell Proteomics. Analytical Chemistry, 2020, 92, 10588-10596.	6.5	105
8	Effect of sialylation on EGFR phosphorylation and resistance to tyrosine kinase inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6955-6960.	7.1	102
9	Sequential Phosphoproteomic Enrichment through Complementary Metal-Directed Immobilized Metal Ion Affinity Chromatography. Analytical Chemistry, 2014, 86, 685-693.	6.5	100
10	Circulating ACE2-expressing extracellular vesicles block broad strains of SARS-CoV-2. Nature Communications, 2022, 13, 405.	12.8	92
11	Boosting to Amplify Signal with Isobaric Labeling (BASIL) Strategy for Comprehensive Quantitative Phosphoproteomic Characterization of Small Populations of Cells. Analytical Chemistry, 2019, 91, 5794-5801.	6.5	86
12	High-throughput and high-efficiency sample preparation for single-cell proteomics using a nested nanowell chip. Nature Communications, 2021, 12, 6246.	12.8	76
13	The AML microenvironment catalyzes a stepwise evolution to gilteritinib resistance. Cancer Cell, 2021, 39, 999-1014.e8.	16.8	62
14	Untargeted, spectral libraryâ€free analysis of dataâ€independent acquisition proteomics data generated using Orbitrap mass spectrometers. Proteomics, 2016, 16, 2257-2271.	2.2	56
15	Three-dimensional feature matching improves coverage for single-cell proteomics based on ion mobility filtering. Cell Systems, 2022, 13, 426-434.e4.	6.2	49
16	Rapid High-pH Reverse Phase StageTip for Sensitive Small-Scale Membrane Proteomic Profiling. Analytical Chemistry, 2015, 87, 12016-12023.	6.5	47
17	Proteogenomic Characterization of Ovarian HGSC Implicates Mitotic Kinases, Replication Stress in Observed Chromosomal Instability. Cell Reports Medicine, 2020, 1, 100004.	6.5	46
18	Surfactant-assisted one-pot sample preparation for label-free single-cell proteomics. Communications Biology, 2021, 4, 265.	4.4	46

#	Article	IF	Citations
19	Transcriptomic and proteomic signatures of stemness and differentiation in the colon crypt. Communications Biology, 2020, 3, 453.	4.4	37
20	Automated Nanoflow Two-Dimensional Reversed-Phase Liquid Chromatography System Enables In-Depth Proteome and Phosphoproteome Profiling of Nanoscale Samples. Analytical Chemistry, 2019, 91, 9707-9715.	6.5	36
21	Phosphoproteomics Reveals HMGA1, a CK2 Substrate, as a Drug-Resistant Target in Non-Small Cell Lung Cancer. Scientific Reports, 2017, 7, 44021.	3.3	31
22	Inducing hair follicle neogenesis with secreted proteins enriched in embryonic skin. Biomaterials, 2018, 167, 121-131.	11.4	29
23	Mining Missing Membrane Proteins by High-pH Reverse-Phase StageTip Fractionation and Multiple Reaction Monitoring Mass Spectrometry. Journal of Proteome Research, 2015, 14, 3658-3669.	3.7	24
24	Tandem Mass Tag Labeling Facilitates Reversed-Phase Liquid Chromatography-Mass Spectrometry Analysis of Hydrophilic Phosphopeptides. Analytical Chemistry, 2019, 91, 11606-11613.	6.5	22
25	Phosphoproteome Analysis Reveals Estrogen-ER Pathway as a Modulator of mTOR Activity Via DEPTOR. Molecular and Cellular Proteomics, 2019, 18, 1607-1618.	3.8	18
26	Informatics View on the Challenges of Identifying Missing Proteins from Shotgun Proteomics. Journal of Proteome Research, 2015, 14, 5396-5407.	3.7	14
27	Facile One-Pot Nanoproteomics for Label-Free Proteome Profiling of 50–1000 Mammalian Cells. Journal of Proteome Research, 2021, 20, 4452-4461.	3.7	12
28	Internal Standard Triggered-Parallel Reaction Monitoring Mass Spectrometry Enables Multiplexed Quantification of Candidate Biomarkers in Plasma. Analytical Chemistry, 2022, 94, 9540-9547.	6.5	11
29	Motif-centric phosphoproteomics to target kinase-mediated signaling pathways. Cell Reports Methods, 2022, 2, 100138.	2.9	10
30	Nanoscale Solid-Phase Isobaric Labeling for Multiplexed Quantitative Phosphoproteomics. Journal of Proteome Research, 2021, 20, 4193-4202.	3.7	7
31	Determining protein polarization proteome-wide using physical dissection of individual Stentor coeruleus cells. Current Biology, 2022, , .	3.9	4
32	Cancer Phosphoproteomics: Tools and Emerging Applications for Mining the Phosphoproteome in Cancer Biology., 2012,, 161-188.		0
33	Mass Spectrometry-Based for Analysis of. Methods in Molecular Biology, 2021, 2259, 247-257.	0.9	0