List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5513187/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV. Physical Review Letters, 2013, 110, 141102.	7.8	852
2	Passive and active droplet generation with microfluidics: a review. Lab on A Chip, 2017, 17, 34-75.	6.0	825
3	Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1ÂGV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station. Physical Review Letters, 2015, 114, 171103.	7.8	655
4	High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–500ÂGeV with the Alpha Magnetic Spectrometer on the International Space Station. Physical Review Letters, 2014, 113, 121101.	7.8	428
5	Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station. Physical Review Letters, 2014, 113, 121102.	7.8	397
6	Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9ÂGV to 3ÂTV with the Alpha Magnetic Spectrometer on the International Space Station. Physical Review Letters, 2015, 115, 211101.	7.8	369
7	Review of Heat Conduction in Nanofluids. Journal of Heat Transfer, 2011, 133, . Precision Measurement of the <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>2.1</td><td>270</td></mml:math>	2.1	270
8	display="inline"> <mml:mo stretchy="false">(<mml:msup><mml:mi>e</mml:mi><mml:mo>+</mml:mo></mml:msup><mml:mo< td=""><td>>>+≤/mml:ı 7.8</td><td>mozzmml:ms 238</td></mml:mo<></mml:mo 	>>+≤/mml:ı 7.8	mozzmml:ms 238
	Alpha Magnetic Spectrometer on the International Space Station. Physical Review Letters, 2014, 113,		
9	Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9ÂGV to 2.6ÂTV with the Alpha Magnetic Spectrometer on the International Space Station. Physical Review Letters, 2016, 117, 231102.	7.8	236
10	Three-dimensional capillary ratchet-induced liquid directional steering. Science, 2021, 373, 1344-1348.	12.6	223
11	Observation of the Identical Rigidity Dependence of He, C, and O Cosmic Rays at High Rigidities by the Alpha Magnetic Spectrometer on the International Space Station. Physical Review Letters, 2017, 119, 251101.	7.8	204
12	Fabrication and characterization of monodisperse PLGA–alginate core–shell microspheres with monodisperse size and homogeneous shells for controlled drug release. Acta Biomaterialia, 2013, 9, 7410-7419.	8.3	154
13	Large-scale water collection of bioinspired cavity-microfibers. Nature Communications, 2017, 8, 1080.	12.8	144
14	Well-defined porous membranes for robust omniphobic surfaces via microfluidic emulsion templating. Nature Communications, 2017, 8, 15823.	12.8	143
15	Critical Issues in Nanofluids Preparation, Characterization and Thermal Conductivity. Current Nanoscience, 2009, 5, 103-112.	1.2	141
16	Nanofluids Research: Key Issues. Nanoscale Research Letters, 2010, 5, 1241-1252.	5.7	124
17	Synthesis and thermal conductivity of Cu2O nanofluids. International Journal of Heat and Mass Transfer, 2009, 52, 4371-4374.	4.8	122
18	Towards Understanding the Origin of Cosmic-Ray Electrons. Physical Review Letters, 2019, 122, 101101.	7.8	109

#	Article	IF	CITATIONS
19	Droplet Microfluidics for the Production of Microparticles and Nanoparticles. Micromachines, 2017, 8, 22.	2.9	108
20	Synthesis and thermal conductivity of microfluidic copper nanofluids. Particuology, 2010, 8, 262-271.	3.6	98
21	Mechano-regulated surface for manipulating liquid droplets. Nature Communications, 2017, 8, 14831.	12.8	88
22	Thermal oscillation and resonance in dual-phase-lagging heat conduction. International Journal of Heat and Mass Transfer, 2002, 45, 1055-1061.	4.8	83
23	Dual-phase-lagging heat conduction based on Boltzmann transport equation. International Journal of Heat and Mass Transfer, 2005, 48, 5616-5624.	4.8	81
24	Photopyroelectric microfluidics. Science Advances, 2020, 6, .	10.3	76
25	Well-posedness and solution structure of dual-phase-lagging heat conduction. International Journal of Heat and Mass Transfer, 2001, 44, 1659-1669.	4.8	69
26	Engineering Micromotors with Droplet Microfluidics. ACS Nano, 2019, 13, 6319-6329.	14.6	68
27	Flow transitions and combined free and forced convective heat transfer in rotating curved channels: The case of positive rotation. Physics of Fluids, 1996, 8, 1553-1573.	4.0	67
28	Stability of Dynamical Systems. Monograph Series on Nonlinear Science and Complexity, 2007, , i-706.	1.2	62
29	Droplet generation in co-flow microfluidic channels with vibration. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	62
30	Well-posedness of dual-phase-lagging heat conduction equation: higher dimensions. International Journal of Heat and Mass Transfer, 2002, 45, 1165-1171.	4.8	61
31	Forced convection in slightly curved microchannels. International Journal of Heat and Mass Transfer, 2007, 50, 881-896.	4.8	60
32	Loss-Free Photo-Manipulation of Droplets by Pyroelectro-Trapping on Superhydrophobic Surfaces. ACS Nano, 2018, 12, 8994-9004.	14.6	60
33	Properties of Neon, Magnesium, and Silicon Primary Cosmic Rays Results from the Alpha Magnetic Spectrometer. Physical Review Letters, 2020, 124, 211102.	7.8	58
34	Nanofluids: Synthesis, Heat Conduction, and Extension. Journal of Heat Transfer, 2009, 131, .	2.1	57
35	Microfluidic fabrication of polymeric core-shell microspheres for controlled release applications. Biomicrofluidics, 2013, 7, 44128.	2.4	55
36	Thermal wave interference as the origin of the overshooting phenomenon in dual-phase-lagging heat conduction. International Journal of Thermal Sciences, 2011, 50, 825-830.	4.9	53

#	Article	IF	CITATIONS
37	Scalable and Automated Fabrication of Conductive Tough-Hydrogel Microfibers with Ultrastretchability, 3D Printability, and Stress Sensitivity. ACS Applied Materials & Interfaces, 2018, 10, 11204-11212.	8.0	53
38	Bioinspired Nanostructured Surfaces for On-Demand Bubble Transportation. ACS Applied Materials & Interfaces, 2018, 10, 3029-3038.	8.0	53
39	Bioinspired Fibers with Controlled Wettability: From Spinning to Application. ACS Nano, 2021, 15, 7907-7930.	14.6	53
40	Effects of nanoparticle shapes on laminar forced convective heat transfer in curved ducts using two-phase model. International Journal of Heat and Mass Transfer, 2018, 116, 292-305.	4.8	50
41	Bifurcation and stability of forced convection in curved ducts of square cross-section. International Journal of Heat and Mass Transfer, 2004, 47, 2971-2987.	4.8	49
42	Selective Electroless Metallization of Micro- and Nanopatterns via Poly(dopamine) Modification and Palladium Nanoparticle Catalysis for Flexible and Stretchable Electronic Applications. ACS Applied Materials & Interfaces, 2018, 10, 28754-28763.	8.0	48
43	Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers. Lab on A Chip, 2017, 17, 3310-3317.	6.0	47
44	Solution structure of hyperbolic heat-conduction equation. International Journal of Heat and Mass Transfer, 2000, 43, 365-373.	4.8	46
45	A new C2 rational interpolation based on function values and constrained control of the interpolant curves. Applied Mathematics and Computation, 2005, 161, 311-322.	2.2	46
46	Tip-multi-breaking in Capillary Microfluidic Devices. Scientific Reports, 2015, 5, 11102.	3.3	45
47	From Boltzmann transport equation to single-phase-lagging heat conduction. International Journal of Heat and Mass Transfer, 2008, 51, 6018-6023.	4.8	44
48	Heat conduction in nanofluids. Chaos, Solitons and Fractals, 2009, 39, 2211-2215.	5.1	44
49	Droplet based microfluidic fabrication of designer microparticles for encapsulation applications. Biomicrofluidics, 2012, 6, 034104.	2.4	44
50	Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chemical Reviews, 2022, 122, 7010-7060.	47.7	44
51	Periodic oscillation in curved duct flows. Physica D: Nonlinear Phenomena, 2005, 200, 296-302.	2.8	43
52	Engineering Microstructure with Evaporationâ€Induced Selfâ€Assembly of Microdroplets. Small Methods, 2018, 2, 1800017.	8.6	43
53	Generalized Fourier law. International Journal of Heat and Mass Transfer, 1994, 37, 2627-2634.	4.8	42
54	Passive Mixing inside Microdroplets. Micromachines, 2018, 9, 160.	2.9	42

LIQIU WANG

#	Article	IF	CITATIONS
55	Asymmetric fibers for efficient fog harvesting. Chemical Engineering Journal, 2021, 415, 128944.	12.7	42
56	Brownian micro-engines and refrigerators in a spatially periodic temperature field: Heat flow and performances. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 352, 286-290.	2.1	41
57	Equivalence between dual-phase-lagging and two-phase-system heat conduction processes. International Journal of Heat and Mass Transfer, 2008, 51, 1751-1756.	4.8	40
58	Properties of Cosmic Helium Isotopes Measured by the Alpha Magnetic Spectrometer. Physical Review Letters, 2019, 123, 181102.	7.8	40
59	Engineering polymeric composite particles by emulsion-templating: thermodynamics versus kinetics. Soft Matter, 2013, 9, 9780.	2.7	39
60	Sandwiched nets for efficient direction-independent fog collection. Journal of Colloid and Interface Science, 2021, 581, 545-551.	9.4	38
61	Hydrogen production from steam reforming of kerosene over Ni–La and Ni–La–K/cordierite catalysts. Fuel, 2006, 85, 1708-1713.	6.4	37
62	Nanofluids of the Future. Advances in Transport Phenomena, 2009, , 179-243.	0.5	36
63	Furcated droplet motility on crystalline surfaces. Nature Nanotechnology, 2021, 16, 1106-1112.	31.5	36
64	Synthesis and characterization of a mesoporous silica (MCM-48) membrane on a large-pore α-Al2O3 ceramic tube. Microporous and Mesoporous Materials, 2007, 106, 35-39.	4.4	34
65	Bioinspired microfibers for water collection. Journal of Materials Chemistry A, 2018, 6, 18766-18781.	10.3	34
66	Droplet Bouncing: Fundamentals, Regulations, and Applications. Small, 2022, 18, e2200277.	10.0	34
67	Evolution of core–shell structure: From emulsions to ultrafine emulsion electrospun fibers. Materials Letters, 2014, 124, 192-196.	2.6	32
68	Topographyâ€Directed Hotâ€Water Superâ€Repellent Surfaces. Advanced Science, 2019, 6, 1900798.	11.2	32
69	Multiplicity and Stability of Convection in Curved Ducts: Review and Progress. Advances in Heat Transfer, 2004, 38, 203-255.	0.9	31
70	Microfluidic synthesis of copper nanofluids. Microfluidics and Nanofluidics, 2010, 9, 727-735.	2.2	30
71	Capillary micromechanics for core–shell particles. Soft Matter, 2014, 10, 3271.	2.7	30
72	Pinch-off of microfluidic droplets with oscillatory velocity of inner phase flow. Scientific Reports, 2016, 6, 31436.	3.3	29

#	Article	IF	CITATIONS
73	Microfluidic Encapsulation of Phase-Change Materials for High Thermal Performance. Langmuir, 2020, 36, 8165-8173.	3.5	29
74	Slippery damper of an overlay for arresting and manipulating droplets on nonwetting surfaces. Nature Communications, 2021, 12, 3154.	12.8	29
75	A robust polymeric binder based on complementary multiple hydrogen bonds in lithium-sulfur batteries. Chemical Engineering Journal, 2022, 427, 130844.	12.7	29
76	Droplet Breakup in Expansion-contraction Microchannels. Scientific Reports, 2016, 6, 21527.	3.3	28
77	Design of multi-scale textured surfaces for unconventional liquid harnessing. Materials Today, 2021, 43, 62-83.	14.2	28
78	Monodisperse magnetite nanofluids: Synthesis, aggregation, and thermal conductivity. Journal of Applied Physics, 2010, 108, .	2.5	27
79	Preparation and performance of Fe3O4@hydrophilic graphene composites with excellent Photo-Fenton activity for photocatalysis. Materials Letters, 2016, 183, 61-64.	2.6	27
80	Buoyancy-force-driven transitions in flow structures and their effects on heat transfer in a rotating curved channel. International Journal of Heat and Mass Transfer, 1997, 40, 223-235.	4.8	26
81	CuS/Cu2S nanofluids: Synthesis and thermal conductivity. International Journal of Heat and Mass Transfer, 2010, 53, 1841-1843.	4.8	25
82	Superwettability with antithetic states: fluid repellency in immiscible liquids. Materials Horizons, 2018, 5, 1156-1165.	12.2	25
83	Dynamic regimes of electrified liquid filaments. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6159-6164.	7.1	25
84	Bifurcation and stability of combined free and forced convection in rotating curved ducts of square cross-section. International Journal of Heat and Mass Transfer, 2003, 46, 613-629.	4.8	24
85	Analysis on multiplicity and stability of convective heat transfer in tightly curved rectangular ducts. International Journal of Heat and Mass Transfer, 2009, 52, 5849-5866.	4.8	24
86	Constructal Design of Particle Volume Fraction in Nanofluids. Journal of Heat Transfer, 2009, 131, .	2.1	24
87	Contributions of international cooperation projects to the HIV/AIDS response in China. International Journal of Epidemiology, 2010, 39, ii14-ii20.	1.9	24
88	Flows Through Porous Media: A Theoretical Development at Macroscale. Transport in Porous Media, 2000, 39, 1-24.	2.6	23
89	Constructal design of nanofluids. International Journal of Heat and Mass Transfer, 2010, 53, 4238-4247.	4.8	23
90	Constructal Allocation of Nanoparticles in Nanofluids. Journal of Heat Transfer, 2010, 132, .	2.1	23

#	Article	IF	CITATIONS
91	A general bioheat model at macroscale. International Journal of Heat and Mass Transfer, 2011, 54, 722-726.	4.8	23
92	Boiling heat transfer on surfaces with 3D-printing microstructures. Experimental Thermal and Fluid Science, 2018, 93, 165-170.	2.7	23
93	A rare variant in MLKL confers susceptibility to ApoE ɛ4-negative Alzheimer's disease in Hong Kong Chinese population. Neurobiology of Aging, 2018, 68, 160.e1-160.e7.	3.1	23
94	Microfluidic Fabrication of Bioinspired Cavity-Microfibers for 3D Scaffolds. ACS Applied Materials & amp; Interfaces, 2018, 10, 29219-29226.	8.0	23
95	Flow in curved channels with a low negative rotation speed. Physical Review E, 1995, 51, 1155-1161.	2.1	22
96	Flow transitions and combined free and forced convective heat transfer in a rotating curved circular tube. International Journal of Heat and Mass Transfer, 1996, 39, 3381-3400.	4.8	22
97	Universality of design and its evolution. Physics of Life Reviews, 2011, 8, 257-258.	2.8	22
98	Toward nanofluids of ultra-high thermal conductivity. Nanoscale Research Letters, 2011, 6, 153.	5.7	22
99	Bioinspired Soft Microactuators. Advanced Materials, 2021, 33, e2008558.	21.0	22
100	Experimental Investigation of Bubble Formation in a Microfluidic T-Shaped Junction. Nanoscale and Microscale Thermophysical Engineering, 2009, 13, 228-242.	2.6	21
101	Citrus-peel-like durable slippery surfaces. Chemical Engineering Journal, 2021, 420, 129599.	12.7	21
102	Superhydrophobicity preventing surface contamination asÂa novel strategy against COVID-19. Journal of Colloid and Interface Science, 2021, 600, 613-619.	9.4	21
103	Heat conduction in nanofluids: Structure–property correlation. International Journal of Heat and Mass Transfer, 2011, 54, 4349-4359.	4.8	20
104	A new weighted rational cubic interpolation and its approximation. Applied Mathematics and Computation, 2005, 168, 990-1003.	2.2	19
105	Transport reversal in a thermal ratchet. Physical Review E, 2005, 72, 031101.	2.1	19
106	REMOVED: Chapter 4 Multiscale Theorems. Advances in Chemical Engineering, 2008, 34, 175-468.	0.9	19
107	Analytical theory of bioheat transport. Journal of Applied Physics, 2011, 109, 104702.	2.5	19
108	Photosensitizers from Spirulina for Solar Cell. Journal of Chemistry, 2014, 2014, 1-5.	1.9	19

#	Article	IF	CITATIONS
109	Flashing motor at high transition rate. Chaos, Solitons and Fractals, 2007, 34, 1265-1271.	5.1	18
110	Engineering particle morphology with microfluidic droplets. Journal of Micromechanics and Microengineering, 2016, 26, 075011.	2.6	18
111	Microfluidics-Based Systems in Diagnosis of Alzheimer's Disease and Biomimetic Modeling. Micromachines, 2020, 11, 787.	2.9	18
112	CePO4 Nanofluids: Synthesis and Thermal Conductivity. Journal of Thermophysics and Heat Transfer, 2009, 23, 219-222.	1.6	17
113	Constructal structure of nanofluids. Journal of Applied Physics, 2010, 108, 074317.	2.5	17
114	Modeling Bioheat Transport at Macroscale. Journal of Heat Transfer, 2011, 133, .	2.1	17
115	Hollow fibers: from fabrication to applications. Chemical Communications, 2021, 57, 9166-9177.	4.1	17
116	Microfluidic generation of ATPS droplets by transient double emulsion technique. Lab on A Chip, 2021, 21, 2684-2690.	6.0	17
117	Frame-indifferent and positive-definite Reynolds stress–strain relation. Journal of Fluid Mechanics, 1997, 352, 341-358.	3.4	16
118	Effective thermal conductivity of nanofluids: the effects of microstructure. Journal Physics D: Applied Physics, 2010, 43, 165501.	2.8	16
119	Engineering Microcapsules for Simultaneous Delivery of Combinational Therapeutics. Advanced Materials Technologies, 2020, 5, 2000623.	5.8	16
120	Spatio-temporal maneuvering of impacting drops. Materials Horizons, 2021, 8, 3133-3140.	12.2	16
121	A novel approach to the convexity control of interpolant curves. Communications in Numerical Methods in Engineering, 2003, 19, 833-845.	1.3	15
122	Synthesis and characterization of Ba0.5Sr0.5TiO3 nanoparticles. Journal of Crystal Growth, 2009, 311, 605-607.	1.5	15
123	A method for predicting thermal waves in dual-phase-lag heat conduction. International Journal of Heat and Mass Transfer, 2017, 115, 250-257.	4.8	15
124	Spreading-induced dewetting for monolayer colloidosomes with responsive permeability. Journal of Materials Chemistry B, 2017, 5, 6034-6041.	5.8	15
125	Effect of Thermal-Electric Cross Coupling on Heat Transport in Nanofluids. Energies, 2017, 10, 123.	3.1	14
126	Nonspecular Reflection of Droplets. Small, 2021, 17, 2006695.	10.0	14

#	Article	IF	CITATIONS
127	Forced convection in tightly coiled ducts: Bifurcation in a high Dean number region. International Journal of Non-Linear Mechanics, 2007, 42, 1018-1034.	2.6	12
128	A Dewetting Model for Double-Emulsion Droplets. Micromachines, 2016, 7, 196.	2.9	12
129	Coalescence-induced transition between unidirectional and bidirectional propagation of droplets. Materials Horizons, 2020, 7, 2078-2084.	12.2	12
130	Formation of Nanoliter Droplets in a Confined Microfluidic T-Shaped Junction: Formation Time and Droplet Volume. Current Nanoscience, 2009, 5, 519-526.	1.2	12
131	Competition of Coriolis instability with centrifugal instability and its effects on heat transfer in a rotating curved heated channel. International Journal of Non-Linear Mechanics, 1999, 34, 35-50.	2.6	11
132	Magic microfluidic T-junctions: Valving and bubbling. Chaos, Solitons and Fractals, 2009, 39, 1530-1537.	5.1	11
133	Heat conduction in cylinders: Entropy generation and mathematical inequalities. International Journal of Heat and Mass Transfer, 2018, 121, 1137-1145.	4.8	11
134	Vector-field theory of heat flux in convective heat transfer. Nonlinear Analysis: Theory, Methods & Applications, 2001, 47, 5009-5020.	1.1	10
135	Property of period-doubling bifurcations. Chaos, Solitons and Fractals, 2005, 24, 527-532.	5.1	10
136	A novel method to synthesize well-dispersed MgTiO3 nanoplatelets. Materials Letters, 2015, 155, 91-93.	2.6	10
137	Rapid mixing of viscous liquids by electrical coiling. Scientific Reports, 2016, 6, 19606.	3.3	10
138	Self-Assembly of TiO ₂ Nanofiber-Based Microcapsules by Spontaneously Evolved Multiple Emulsions. Langmuir, 2018, 34, 8785-8791.	3.5	10
139	Complex threeâ€dimensional microparticles from microfluidic lithography. Electrophoresis, 2020, 41, 1491-1502.	2.4	10
140	Heat Transfer in Nanofluids 2012. Advances in Mechanical Engineering, 2012, 4, 972973.	1.6	10
141	1+1 > 2: Extraordinary Fluid Conductivity Enhancement. Current Nanoscience, 2009, 5, 527-529.	1.2	10
142	Single- and Dual-Phase-Lagging Heat Conduction Models in Moving Media. Journal of Heat Transfer, 2008, 130, .	2.1	9
143	Microfluidic Method for Synthesizing Cu2O Nanofluids. Journal of Thermophysics and Heat Transfer, 2010, 24, 445-448.	1.6	9
144	Non-Fourier heat conduction in oil-in-water emulsions. International Journal of Heat and Mass Transfer, 2019, 135, 323-330.	4.8	9

#	Article	IF	CITATIONS
145	Droplet pinch-off with pressure fluctuations. Chemical Engineering Science, 2019, 196, 333-343.	3.8	9
146	Multiplicity of forced convective heat transfer of nanofluids in curved ducts. International Journal of Heat and Mass Transfer, 2019, 129, 534-546.	4.8	9
147	Gradient wettability induced by deterministically patterned nanostructures. Microsystems and Nanoengineering, 2020, 6, 106.	7.0	9
148	Lubricant-Mediated Strong Droplet Adhesion on Lubricant-Impregnated Surfaces. Langmuir, 2021, 37, 8607-8615.	3.5	9
149	AN APPROACH FOR THERMODYNAMIC REASONING. International Journal of Modern Physics B, 1996, 10, 2531-2551.	2.0	8
150	Self-similarity of fluid flows. Applied Physics Letters, 1998, 73, 1329-1330.	3.3	8
151	Bifurcation and stability of forced convection in tightly coiled ducts: multiplicity. Chaos, Solitons and Fractals, 2005, 26, 337-352.	5.1	8
152	MICROSTRUCTURAL EFFECTS ON MACROSCALE THERMAL PROPERTIES IN NANOFLUIDS. Nano, 2010, 05, 117-125.	1.0	8
153	Suppressing the Folding of Flowing Viscous Jets Using an Electric Field. Physical Review Applied, 2015, 3, .	3.8	8
154	Microfluidic Applications in Drug Development: Fabrication of Drug Carriers and Drug Toxicity Screening. Micromachines, 2022, 13, 200.	2.9	8
155	Magnetic Field-Assisted Fission of a Ferrofluid Droplet for Large-Scale Droplet Generation. Langmuir, 2022, 38, 5838-5846.	3.5	8
156	Visualization of Flows in Curved Channels with a Moderate or High Rotation Speed. International Journal of Rotating Machinery, 1997, 3, 215-231.	0.8	7
157	Effect of spanwise rotation on centrifugal instability in rotating curved non-isothermal flows. Computational Mechanics, 1997, 19, 420-433.	4.0	7
158	Minimum heat to environment and entropy. International Journal of Heat and Mass Transfer, 1998, 41, 1869-1871.	4.8	7
159	Solution Structure and Stability of Viscous Flow in Curved Square Ducts. Journal of Fluids Engineering, Transactions of the ASME, 2001, 123, 863-868.	1.5	7
160	Thermal vibration phenomenon of single phase lagging heat conduction and its thermodynamic basis. Science Bulletin, 2008, 53, 3597-3602.	9.0	7
161	Copper Nanofluids: Synthesis and Thermal Conductivity. Current Nanoscience, 2010, 6, 512-519.	1.2	7
162	Optimization of laminar convective heat transfer of oil-in-water nanoemulsion fluids in a toroidal duct. International Journal of Heat and Mass Transfer, 2020, 150, 119332.	4.8	7

#	Article	IF	CITATIONS
163	Aqueous Dropâ€onâ€Drop Impact on Superâ€Repellent Surface. Advanced Materials Interfaces, 2022, 9, .	3.7	7
164	TWO FINITE-ELEMENT SCHEMES FOR STEADY CONVECTIVE HEAT TRANSFER WITH SYSTEM ROTATION AND VARIABLE THERMAL PROPERTIES. Numerical Heat Transfer, Part B: Fundamentals, 2005, 47, 343-360.	0.9	6
165	Chaotic Oscillations of Forced Convection in Tightly Coiled Ducts. Numerical Heat Transfer; Part A: Applications, 2007, 51, 179-194.	2.1	6
166	The Effect of Negative Spanwise Rotation on Dean Vortices. Journal of Fluids Engineering, Transactions of the ASME, 1997, 119, 718-721.	1.5	6
167	Ultrathin metal-mesh Janus membranes with nanostructure-enhanced hydrophobicity for high-efficiency fog harvesting. Journal of Cleaner Production, 2022, 363, 132444.	9.3	6
168	Secondary Flow Phenomena in Rotating Radial Straight Pipes. International Journal of Rotating Machinery, 1995, 2, 103-111.	0.8	5
169	Region control and approximation of a weighted rational interpolating curves. Communications in Numerical Methods in Engineering, 2005, 22, 41-53.	1.3	5
170	Bifurcation and stability of forced convection in tightly coiled ducts: stability. Chaos, Solitons and Fractals, 2006, 27, 991-1005.	5.1	5
171	Nanoliter-Droplet Breakup in Confined T-Shaped Junctions. Current Nanoscience, 2011, 7, 471-479.	1.2	5
172	Beyond the classical theory of heat conduction: a perspective view of future from entropy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160362.	2.1	5
173	Engineering the Flow of Liquid Two-Phase Systems by Passive Noise Control. Physical Review Applied, 2018, 9, .	3.8	5
174	Hourglass-Shaped Microfibers. ACS Applied Materials & amp; Interfaces, 2020, 12, 29747-29756.	8.0	5
175	Bioinspired Depletionâ€Resistant Lubricantâ€Infused Surfaces with Selfâ€Replenishing Lubrication Through Capillary Filament. Advanced Materials Interfaces, 2021, 8, 2100561.	3.7	5
176	Numerical investigation of a droplet impacting obliquely on a horizontal solid surface. Physical Review Fluids, 2022, 7, .	2.5	5
177	A decomposition theorem of motion. International Journal of Engineering Science, 1996, 34, 417-423.	5.0	4
178	SECOND LAW OF THERMODYNAMICS AND ARITHMETIC-MEAN–GEOMETRIC-MEAN INEQUALITY. International Journal of Modern Physics B, 1999, 13, 2791-2793.	2.0	4
179	Dual-Phase-Lagging and Porous-Medium Heat Conduction Processes. , 2008, , 1-37.		4
180	FORMATION OF NANOLITER BUBBLES IN MICROFLUIDIC T-JUNCTIONS. Nano, 2010, 05, 175-184.	1.0	4

LIQIU WANG

#	Article	IF	CITATIONS
181	Multifunctional Nanofluids: Synthesis, Aggregation and Thermal Conductivity. Current Nanoscience, 2011, 7, 480-488.	1.2	4
182	Constructal blade shape in nanofluids. Nanoscale Research Letters, 2011, 6, 240.	5.7	4
183	Pulsation of electrified jet in capillary microfluidics. Scientific Reports, 2017, 7, 5673.	3.3	4
184	Engineering embolic microparticles from a periodically-pulsating charged liquid meniscus. Chemical Engineering Science, 2018, 183, 13-19.	3.8	4
185	Microfluidic Rapid Fabrication of Tunable Polyvinyl Alcohol Microspheres for Adsorption Applications. Materials, 2019, 12, 3712.	2.9	4
186	Thermodynamics of moving Gibbs dividing surfaces. Physical Review E, 1997, 55, 1732-1738.	2.1	3
187	A General Theory of Diffusion. Progress of Theoretical Physics, 1999, 101, 541-557.	2.0	3
188	Numerical Simulation of Multiplicity and Stability of Mixed Convection in Rotating Curved Ducts. International Journal of Rotating Machinery, 2005, 2005, 168-178.	0.8	3
189	Microfluidics: Fabrication, Droplets, Bubbles and Nanofluids Synthesis. Advances in Transport Phenomena, 2011, , 171-294.	0.5	3
190	Copper Nanoparticles and Nanofluids-based W/O Emulsions Synthesized with Droplet Microreactors. Current Nanoscience, 2012, 8, 117-119.	1.2	3
191	Two nanofluid configurations for heat conduction systems: performance comparison. International Journal of Heat and Mass Transfer, 2013, 66, 632-641.	4.8	3
192	Prioritizing genes responsible for host resistance to influenza using network approaches. BMC Genomics, 2013, 14, 816.	2.8	3
193	Heat Transfer in Nanofluids 2013. Advances in Mechanical Engineering, 2014, 6, 832415.	1.6	3
194	Super-alcohol-repellent coatings. Journal of Colloid and Interface Science, 2022, 613, 146-154.	9.4	3
195	PROPERTIES OF HEAT FLUX FUNCTIONS AND A LINEAR THEORY OF HEAT FLUX. International Journal of Modern Physics B, 1995, 09, 1113-1122.	2.0	2
196	Numerical Simulation of Heat and Flow of Liquid Through Minichannels. , 2006, , 691.		2
197	Quasi-least-squares finite element method for steady flow and heat transfer with system rotation. Numerische Mathematik, 2006, 104, 377-411.	1.9	2
198	On-Chip Facile Preparation of Monodisperse Resorcinol Formaldehyde (RF) Resin Microspheres. Micromachines, 2018, 9, 24.	2.9	2

#	Article	IF	CITATIONS
199	Experimental observations on the interface front of phase change material inside cylindrical cavity. Energy Storage, 2019, 1, e36.	4.3	2
200	Is Classical Energy Equation Adequate for Convective Heat Transfer in Nanofluids?. Advances in Mechanical Engineering, 2010, 2, 719406.	1.6	2
201	Progress in all-aqueous droplets generation with microfluidics: Mechanisms of formation and stability improvements. Biophysics Reviews, 2022, 3, .	2.7	2
202	Dynamics of Zero-Mass Gibbs Interfaces. Surface Review and Letters, 1998, 05, 1015-1022.	1.1	1
203	Modelling of subgrid-scale fluxes. Chaos, Solitons and Fractals, 2007, 34, 368-375.	5.1	1
204	Mechanism on Mass Transfer in Micro-Scale During the Microwave Drying of Plant Porous Materials. , 2009, , .		1
205	Fractal Dimension of Pore Size Distribution Inside Matrix of Plant Materials and Drying Behavior. , 2010, , .		1
206	Special issue on nanofluids. Nanoscale Research Letters, 2011, 6, 99.	5.7	1
207	Effects of liquid morphology and distribution on the apparent properties of porous media made of stacked particles. Advances in Mechanical Engineering, 2015, 7, 168781401558611.	1.6	1
208	Droplet Manipulations: Nonspecular Reflection of Droplets (Small 3/2021). Small, 2021, 17, 2170009.	10.0	1
209	SECONDARY FLOW PHENOMENA IN A ROTATING RADIAL STRAIGHT SQUARE CHANNEL. Journal of Flow Visualization and Image Processing, 1996, 3, 237-246.	0.5	1
210	Visualization of Flows in Channels with Curvature and Rotation. , 2001, , 339-360.		1
211	Active Droplet Generation with Microfluidics by Mechanical Vibration. , 2022, , 41-67.		1
212	Microfluidics-Synthesized Colloidosomes. , 2022, , 89-104.		1
213	Linear Laws in Physics. International Journal of Modern Physics B, 1998, 12, 1751-1754.	2.0	0
214	Multiplicity and Stability of Forced Convective Heat Transfer in Microchannels. , 2003, , 281.		0
215	Fractal Characterization of Astragalus Slices Under Various Microwave Assisted Extraction Conditions. , 2009, , .		0
216	The Role of Aperture in the Extraction of Functional Components From Plant Materials. , 2009, , .		0

#	Article	IF	CITATIONS
217	Professor Kwang-Tzu Yang on his 80th birthday. International Journal of Heat and Mass Transfer, 2009, 52, 2923-2924.	4.8	0
218	Effect of Microwave Irradiation on the Flow of Micro-Particle Suspension (TiO2/H2O) in Micro-Scale Porous Structure. , 2009, , .		0
219	Correlation Between Fractal Dimension of Matrix and Extraction Behavior of Plant Materials. , 2010, , \cdot		0
220	Numerical Simulation of Thermal Conductivity of Nanofluids. , 2010, , .		0
221	Research and Engineering Practice in Nanofluids: Key Issues. , 2010, , .		0
222	Editorial to special issue on advances in heat transfer enhancement. Advances in Mechanical Engineering, 2015, 7, 168781401560237.	1.6	0
223	Heat Transfer Inside the Physical Vapor Transport Reactor. Journal of Heat Transfer, 2016, 138, .	2.1	0
224	Engineering a Bi-Conical Microchip as Vascular Stenosis Model. Micromachines, 2019, 10, 790.	2.9	0
225	Direct visualization of beam-resist interaction volume for sub-nanometer helium ion beam-lithography. Nanotechnology, 2021, 32, 415302.	2.6	0
226	Multiplicity and stability in transport phenomena. , 2001, , 1668-1672.		0
227	Multiplicity and stability of exothermic chemical reaction in catalyst beds. , 2001, , 1353-1354.		Ο
228	Numerical Computation of Roughness Effects on Heat Transfer and Hydrodynamic Characteristics in Microchannels. , 2006, , .		0
229	Effect of Biological Macro-Molecular Flow on the Hot Air Drying of Astragalus Slices. , 2009, , .		0
230	Remarks on Microfluidic Fabrication of Nano-/subnano-liter Droplets. Current Nanoscience, 2009, 5, 353-357.	1.2	0
231	Dynamics of Passive Droplet Generation in Capillary Microfluidic Devices. , 2022, , 25-39.		0
232	Summary and Perspective. , 2022, , 301-305.		0
233	Microcavity Surfaces for Robust Hot-Water Super-Repellency. , 2022, , 241-262.		0
234	Well-Ordered Microstructures from Droplet Self-Assembly 2022 195-216		0

#	Article	IF	CITATIONS
235	Oil-Assisted Generation of Water-in-Water Droplets with Microfluidics. , 2022, , 69-87.		0