Safrina Dyah Hardiningtyas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5513033/publications.pdf

Version: 2024-02-01

124 papers 3,347 citations

32 h-index 52 g-index

126 all docs

126 docs citations

times ranked

126

3228 citing authors

#	Article	IF	CITATIONS
1	Recent advances in research on biointerfaces: From cell surfaces to artificial interfaces. Journal of Bioscience and Bioengineering, 2022, , .	2.2	6
2	Hydrophobic immiscibility controls self-sorting or co-assembly of peptide amphiphiles. Chemical Communications, 2022, 58, 585-588.	4.1	6
3	A solid-in-oil-in-water emulsion: An adjuvant-based immune-carrier enhances vaccine effect. Biomaterials, 2022, 282, 121385.	11.4	4
4	Enhancement of the Antifungal Activity of Chitinase by Palmitoylation and the Synergy of Palmitoylated Chitinase with Amphotericin B. ACS Infectious Diseases, 2022, 8, 1051-1061.	3.8	8
5	Transdermal Delivery of Antigenic Protein Using Ionic Liquid-Based Nanocarriers for Tumor Immunotherapy. ACS Applied Bio Materials, 2022, 5, 2586-2597.	4.6	11
6	Depolimerisasi Kitosan dari Cangkang Udang dengan Enzim Papain dan Iradiasi Sinar Ultraviolet. Jurnal Pengolahan Hasil Perikanan Indonesia, 2022, 25, 118-131.	0.3	0
7	Co-amorphous formation of piroxicam-citric acid to generate supersaturation and improve skin permeation. European Journal of Pharmaceutical Sciences, 2021, 158, 105667.	4.0	29
8	Strategies for Making Multimeric and Polymeric Bifunctional Protein Conjugates and Their Applications as Bioanalytical Tools. Analytical Sciences, 2021, 37, 425-437.	1.6	1
9	Extending the Half-Life of a Protein <i>in Vivo</i> by Enzymatic Labeling with Amphiphilic Lipopeptides. Bioconjugate Chemistry, 2021, 32, 655-660.	3.6	6
10	Protein-Functionalized Gold Nanoparticles for Antibody Detection Using the Darkfield Microscopic Observation of Nanoparticle Aggregation. Analytical Sciences, 2021, 37, 507-511.	1.6	8
11	pH-Responsive Self-Assembly of Designer Aromatic Peptide Amphiphiles and Enzymatic Post-Modification of Assembled Structures. International Journal of Molecular Sciences, 2021, 22, 3459.	4.1	8
12	Active Human and Murine Tumor Necrosis Factor α Cytokines Produced from Silkworm Baculovirus Expression System. Insects, 2021, 12, 517.	2.2	3
13	Orthogonal Enzymatic Conjugation Reactions Create Chitin Binding Domain Grafted Chitinase Polymers with Enhanced Antifungal Activity. Bioconjugate Chemistry, 2021, 32, 1688-1698.	3.6	9
14	α- <scp>l</scp> -Arabinofuranosidase as an Orthogonal Enzyme for Human Cells. Chemistry Letters, 2021, 50, 1493-1495.	1.3	2
15	Lipid-Based Ionic-Liquid-Mediated Nanodispersions as Biocompatible Carriers for the Enhanced Transdermal Delivery of a Peptide Drug. ACS Applied Bio Materials, 2021, 4, 6256-6267.	4.6	21
16	Design of Swollen Lipidic Cubic Phase to Increase Transcutaneous Penetration of Biomacromolecules. ACS Applied Materials & Samp; Interfaces, 2021, 13, 54753-54761.	8.0	5
17	A Novel Binary Supercooled Liquid Formulation for Transdermal Drug Delivery. Biological and Pharmaceutical Bulletin, 2020, 43, 393-398.	1.4	9
18	Biocompatible Ionic Liquid Enhances Transdermal Antigen Peptide Delivery and Preventive Vaccination Effect. Molecular Pharmaceutics, 2020, 17, 3845-3856.	4.6	37

#	Article	IF	Citations
19	Recombinant production of active microbial transglutaminase in E. coli by using self-cleavable zymogen with mutated propeptide. Protein Expression and Purification, 2020, 176, 105730.	1.3	12
20	Dual-Functionalizable Streptavidin–SpyCatcher-Fused Protein–Polymer Hydrogels as Scaffolds for Cell Culture. ACS Applied Bio Materials, 2020, 3, 7734-7742.	4.6	9
21	Poly(ethylene glycol)-based biofunctional hydrogels mediated by peroxidase-catalyzed cross-linking reactions. Polymer Journal, 2020, 52, 899-911.	2.7	11
22	Biocompatible Ionic Liquid Surfactant-Based Microemulsion as a Potential Carrier for Sparingly Soluble Drugs. ACS Sustainable Chemistry and Engineering, 2020, 8, 6263-6272.	6.7	66
23	Linear Polymerization of Protein by Sterically Controlled Enzymatic Cross-Linking with a Tyrosine-Containing Peptide Loop. ACS Omega, 2020, 5, 5160-5169.	3.5	9
24	Solid-in-Oil Nanodispersions for Transcutaneous Immunotherapy of Japanese Cedar Pollinosis. Pharmaceutics, 2020, 12, 240.	4. 5	1
25	A Solid-in-Oil Nanodispersion System for Transcutaneous Immunotherapy of Cow's Milk Allergies. Pharmaceutics, 2020, 12, 205.	4.5	4
26	Redox-responsive functionalized hydrogel marble for the generation of cellular spheroids. Journal of Bioscience and Bioengineering, 2020, 130, 416-423.	2.2	7
27	Construction of higher-order cellular microstructures by a self-wrapping co-culture strategy using a redox-responsive hydrogel. Scientific Reports, 2020, 10, 6710.	3.3	10
28	lonic Liquid-In-Oil Microemulsions Prepared with Biocompatible Choline Carboxylic Acids for Improving the Transdermal Delivery of a Sparingly Soluble Drug. Pharmaceutics, 2020, 12, 392.	4.5	55
29	Choline and amino acid based biocompatible ionic liquid mediated transdermal delivery of the sparingly soluble drug acyclovir. International Journal of Pharmaceutics, 2020, 582, 119335.	5.2	52
30	New insight into transdermal drug delivery with supersaturated formulation based on co-amorphous system. International Journal of Pharmaceutics, 2019, 569, 118582.	5.2	27
31	A nano-sized gel-in-oil suspension for transcutaneous protein delivery. International Journal of Pharmaceutics, 2019, 567, 118495.	5.2	8
32	Solid-in-oil nanodispersions for intranasal vaccination: Enhancement of mucosal and systemic immune responses. International Journal of Pharmaceutics, 2019, 572, 118777.	5.2	4
33	Transcutaneous Delivery of Immunomodulating Pollen Extract-Galactomannan Conjugate by Solid-in-Oil Nanodispersions for Pollinosis Immunotherapy. Pharmaceutics, 2019, 11, 563.	4.5	6
34	Self-Assembled Reduced Albumin and Glycol Chitosan Nanoparticles for Paclitaxel Delivery. Langmuir, 2019, 35, 2610-2618.	3.5	18
35	Enzymatically Prepared Dual Functionalized Hydrogels with Gelatin and Heparin To Facilitate Cellular Attachment and Proliferation. ACS Applied Bio Materials, 2019, 2, 2600-2609.	4.6	11
36	In vivo biocompatibility, pharmacokinetics, antitumor efficacy, and hypersensitivity evaluation of ionic liquid-mediated paclitaxel formulations. International Journal of Pharmaceutics, 2019, 565, 219-226.	5 . 2	35

#	Article	IF	CITATIONS
37	Synthesis and characterization of choline–fatty-acid-based ionic liquids: A new biocompatible surfactant. Journal of Colloid and Interface Science, 2019, 551, 72-80.	9.4	104
38	Functional horseradish peroxidaseâ^'streptavidin chimeric proteins prepared using a silkworm-baculovirus expression system for diagnostic purposes. Journal of Biotechnology, 2019, 297, 28-31.	3.8	3
39	Enzymatic Cellâ€Surface Decoration with Proteins using Amphiphilic Lipidâ€Fused Peptide Substrates. Chemistry - A European Journal, 2019, 25, 7315-7321.	3.3	16
40	Polymerization of Horseradish Peroxidase by a Laccaseâ€Catalyzed Tyrosine Coupling Reaction. Biotechnology Journal, 2019, 14, e1800531.	3.5	18
41	Expression and purification of biologically active human granulocyte-macrophage colony stimulating factor (hGM-CSF) using silkworm-baculovirus expression vector system. Protein Expression and Purification, 2019, 159, 69-74.	1.3	9
42	Expression and Activation of Horseradish Peroxidase-Protein A/G Fusion Protein in Silkworm Larvae for Diagnostic Purposes. Biotechnology Journal, 2018, 13, 1700624.	3.5	2
43	Genipin-stabilized caseinate-chitosan nanoparticles for enhanced stability and anti-cancer activity of curcumin. Colloids and Surfaces B: Biointerfaces, 2018, 164, 308-315.	5.0	34
44	Mechanistic investigation of transcutaneous protein delivery using solid-in-oil nanodispersion: A case study with phycocyanin. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 127, 44-50.	4.3	11
45	Formation and Characterization of Caseinate–Chitosan Nanocomplexes for Encapsulation of Curcumin. Journal of Chemical Engineering of Japan, 2018, 51, 445-453.	0.6	4
46	Liquid Marbles as an Easyâ€toâ€Handle Compartment for Cellâ€Free Synthesis and In Situ Immobilization of Recombinant Proteins. Biotechnology Journal, 2018, 13, 1800085.	3.5	12
47	lonic-Liquid-Based Paclitaxel Preparation: A New Potential Formulation for Cancer Treatment. Molecular Pharmaceutics, 2018, 15, 2484-2488.	4.6	101
48	Laccase-catalyzed bioconjugation of tyrosine-tagged functional proteins. Journal of Bioscience and Bioengineering, 2018, 126, 559-566.	2.2	14
49	Protein-Grafted Polymers Prepared Through a Site-Specific Conjugation by Microbial Transglutaminase for an Immunosorbent Assay. Biomacromolecules, 2017, 18, 422-430.	5.4	34
50	Polymeric SpyCatcher Scaffold Enables Bioconjugation in a Ratioâ€Controllable Manner. Biotechnology Journal, 2017, 12, 1700195.	3.5	26
51	Transcutaneous immunotherapy of pollinosis using solid-in-oil nanodispersions loaded with T cell epitope peptides. International Journal of Pharmaceutics, 2017, 529, 401-409.	5.2	10
52	Primary Amine-Clustered DNA Aptamer for DNA–Protein Conjugation Catalyzed by Microbial Transglutaminase. Bioconjugate Chemistry, 2017, 28, 2954-2961.	3.6	31
53	Direct Ethanol Production from Ionic Liquid-Pretreated Lignocellulosic Biomass by Cellulase-Displaying Yeasts. Applied Biochemistry and Biotechnology, 2017, 182, 229-237.	2.9	41
54	FRET-based detection of isozyme-specific activities of transglutaminases. Amino Acids, 2017, 49, 615-623.	2.7	4

#	Article	IF	CITATIONS
55	Extraction and Stripping Behavior of Platinum Group Metals Using an Amic-Acid-Type Extractant. Journal of Chemical Engineering of Japan, 2017, 50, 521-526.	0.6	19
56	Selective Extraction of Scandium from Transition Metals by Synergistic Extraction with 2-Thenoyltrifluoroacetone and Tri- <i>n</i> -octylphosphine Oxide. Solvent Extraction Research and Development, 2016, 23, 137-143.	0.4	17
57	Mutual Separation of Indium, Gallium, and Zinc with the Amic Acid-type Extractant D2EHAG Containing Glycine and Amide Moieties. Solvent Extraction Research and Development, 2016, 23, 9-18.	0.4	9
58	Enzymatic conjugation of multiple proteins on a DNA aptamer in a tailâ€specific manner. Biotechnology Journal, 2016, 11, 814-823.	3.5	8
59	Self-assembly of Ni-NTA-modified \hat{l}^2 -annulus peptides into artificial viral capsids and encapsulation of His-tagged proteins. Organic and Biomolecular Chemistry, 2016, 14, 7869-7874.	2.8	32
60	Powerful peracetic acid–ionic liquid pretreatment process for the efficient chemical hydrolysis of lignocellulosic biomass. Bioresource Technology, 2016, 214, 487-495.	9.6	36
61	Salt-Switchable Artificial Cellulase Regulated by a DNA Aptamer. Biomacromolecules, 2016, 17, 3356-3362.	5.4	2
62	Highly efficient and low toxic skin penetrants composed of amino acid ionic liquids. RSC Advances, 2016, 6, 87753-87755.	3.6	46
63	Solidâ€inâ€oil nanodispersions for transdermal drug delivery systems. Biotechnology Journal, 2016, 11, 1375-1385.	3.5	38
64	Enzymatically prepared redoxâ€responsive hydrogels as potent matrices for hepatocellular carcinoma cell spheroid formation. Biotechnology Journal, 2016, 11, 1452-1460.	3.5	21
65	A Single Fluorophore-labeled Aptamer Sensor for the Detection of Interferon Gamma. Chemistry Letters, 2015, 44, 1670-1672.	1.3	5
66	Separation of Gold(III) in Acidic Chloride Solution Using Porous Polymeric Ionic Liquid Gel. Journal of Chemical Engineering of Japan, 2015, 48, 197-201.	0.6	1
67	Transcutaneous Peptide Immunotherapy of Japanese Cedar Pollinosis Using Solid-in-Oil Nanodispersion Technology. AAPS PharmSciTech, 2015, 16, 1418-1424.	3.3	17
68	Synergistic effect and application of xylanases as accessory enzymes to enhance the hydrolysis of pretreated bagasse. Enzyme and Microbial Technology, 2015, 72, 16-24.	3.2	88
69	Effect of pretreatment methods on the synergism of cellulase and xylanase during the hydrolysis of bagasse. Bioresource Technology, 2015, 185, 158-164.	9.6	31
70	Heme precursor injection is effective for Arthromyces ramosus peroxidase fusion protein production by a silkworm expression system. Journal of Bioscience and Bioengineering, 2015, 120, 384-386.	2.2	4
71	Transcutaneous immunization against cancer using solid-in-oil nanodispersions. MedChemComm, 2015, 6, 1387-1392.	3.4	16
72	Ionic liquid-mediated transcutaneous protein delivery with solid-in-oil nanodispersions. MedChemComm, 2015, 6, 2124-2128.	3.4	49

#	Article	IF	Citations
7 3	Enzyme-mediated preparation of hydrogels composed of poly(ethylene glycol) and gelatin as cell culture platforms. RSC Advances, 2015, 5, 3070-3073.	3.6	13
74	Optimization of a Fusion Protein Expression System using Human Cell Lines to Create a Practical Immunoassay Reagent. Kagaku Kogaku Ronbunshu, 2015, 41, 38-42.	0.3	2
7 5	Development of a Peroxidase-Fused Protein Reagent by <i>Brevibacillus choshinensis</i> Heterologous Expression System. Kagaku Kogaku Ronbunshu, 2015, 41, 157-161.	0.3	0
76	Separation of Precious Metals by Using Undiluted Ionic Liquids. Solvent Extraction Research and Development, 2014, 21, 89-94.	0.4	27
77	Synergistic Extraction of Rare-Earth Metals and Separation of Scandium Using 2-Thenoyltrifluoroacetone and Tri- <i>n</i> -octylphosphine Oxide in an Ionic Liquid System. Journal of Chemical Engineering of Japan, 2014, 47, 656-662.	0.6	35
78	Conformational preference of a porphyrin rotor in confined environments. RSC Advances, 2014, 4, 705-708.	3.6	8
79	The self-assembly and secondary structure of peptide amphiphiles determine the membrane permeation activity. RSC Advances, 2014, 4, 30654-30657.	3.6	5
80	Sucrose laurate-enhanced transcutaneous immunization with a solid-in-oil nanodispersion. MedChemComm, 2014, 5, 20-24.	3.4	27
81	A novel surface-coated nanocarrier for efficient encapsulation and delivery of camptothecin to cells. MedChemComm, 2014, 5, 1515-1519.	3.4	5
82	Enzymatic self-sacrificial display of an active protein on gold nanoparticles. RSC Advances, 2014, 4, 5995.	3.6	2
83	Selective extraction of scandium from yttrium and lanthanides with amic acid-type extractant containing alkylamide and glycine moieties. RSC Advances, 2014, 4, 50726-50730.	3.6	48
84	Application of cellulose acetate to the selective adsorption and recovery of Au(III). Carbohydrate Polymers, 2014, 111, 768-774.	10.2	77
85	One Step Effective Separation of Platinum and Palladium in an Acidic Chloride Solution by Using Undiluted Ionic Liquids. Solvent Extraction Research and Development, 2014, 21, 129-135.	0.4	24
86	Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. Journal of Hazardous Materials, 2013, 254-255, 79-88.	12.4	213
87	Enzymatic preparation of streptavidin-immobilized hydrogel using a phenolated linear poly(ethylene) Tj ETQq1 I	l 0.784314	rgBT /Overlo
88	lonic Liquid-in-Oil Microemulsions as Potential Carriers for the Transdermal Delivery of Methotrexate. Journal of Chemical Engineering of Japan, 2013, 46, 794-796.	0.6	15
89	A Comparative Study of Ionic Liquids and a Conventional Organic Solvent on the Extraction of Rare-earth Ions with TOPO. Solvent Extraction Research and Development, 2013, 20, 225-232.	0.4	29
90	Extraction of Rare-Earth lons with an 8-Hydroxyquinoline Derivative in an Ionic Liquid. Solvent Extraction Research and Development, 2013, 20, 123-129.	0.4	7

#	Article	IF	Citations
91	Transdermal delivery of insulin using a solid-in-oil nanodispersion enhanced by arginine-rich peptides. MedChemComm, 2012, 3, 1496.	3.4	23
92	Extraction and Separation of Rare Earth Metal lons with DODGAA in Ionic liquids. Solvent Extraction Research and Development, 2012, 19, 69-76.	0.4	24
93	Selective Recovery of Dysprosium and Neodymium Ions by a Supported Liquid Membrane Based on Ionic Liquids. Solvent Extraction Research and Development, 2011, 18, 193-198.	0.4	55
94	Recent Advances in Extraction and Separation of Rare-Earth Metals Using Ionic Liquids. Journal of Chemical Engineering of Japan, 2011, 44, 679-685.	0.6	96
95	New Fluorescent Substrates of Microbial Transglutaminase and Its Application to Peptide Tag-Directed Covalent Protein Labeling. Methods in Molecular Biology, 2011, 751, 81-94.	0.9	7
96	Quaternary Ammonium Bacterial Cellulose for Adsorption of Proteins. Solvent Extraction Research and Development, 2010, 17, 73-81.	0.4	22
97	Selective Separation of Precious Metals using Biomass Materials. Kagaku Kogaku Ronbunshu, 2010, 36, 255-258.	0.3	5
98	Stimuli-responsive nanoparticles composed of naturally occurring amphiphilic proteins. Chemical Communications, 2009, , 5287.	4.1	13
99	Fluorescent substrates for covalent protein labeling catalyzed by microbial transglutaminase. Organic and Biomolecular Chemistry, 2009, 7, 3407.	2.8	25
100	A transdermal Delivery System of an Ascorbic Acid DerivativeUtilizing Solid–in–Oil Technique. Membrane, 2009, 34, 227-232.	0.0	4
101	Enzymatic inÂsitu saccharification of cellulose in aqueous-ionic liquid media. Biotechnology Letters, 2008, 30, 1037-1040.	2.2	196
102	A solid-in-oil nanodispersion for transcutaneous protein delivery. Journal of Controlled Release, 2008, 131, 14-18.	9.9	94
103	Water-in-ionic liquid microemulsions as a new medium for enzymatic reactions. Green Chemistry, 2008, 10, 497.	9.0	142
104	Functional immobilization of recombinant alkaline phosphatases bearing a glutamyl donor substrate peptide of microbial transglutaminase. Journal of Bioscience and Bioengineering, 2007, 104, 195-199.	2.2	15
105	Factors affecting protein release behavior from surfactant–protein complexes under physiological conditions. International Journal of Pharmaceutics, 2007, 338, 174-179.	5.2	19
106	Activation of lipase in ionic liquids by modification with comb-shaped poly(ethylene glycol). Science and Technology of Advanced Materials, 2006, 7, 692-698.	6.1	42
107	Transglutaminase-Mediated Protein Immobilization to Casein Nanolayers Created on a Plastic Surface. Biomacromolecules, 2005, 6, 35-38.	5.4	40
108	Intermittent partition walls promote solvent extraction of metal ions in a microfluidic device. Analyst, The, 2004, 129, 1008.	3.5	64

#	Article	IF	CITATIONS
109	Efficient Refolding of Inclusion Bodies by Reversed Micelles. Kagaku Kogaku Ronbunshu, 2004, 30, 468-473.	0.3	O
110	Solid-phase Peptide Synthesis in a Microfluidic Device. Kagaku Kogaku Ronbunshu, 2004, 30, 180-182.	0.3	0
111	Ring-opening Polymerization of Lactones Catalyzed by Surfactant-Coated Lipases in Organic Solvents Journal of Chemical Engineering of Japan, 2003, 36, 307-312.	0.6	4
112	Leakage Mechanism of Irinotecan from Water-in-Oil-in-Water (W/O/W) Multiple Emulsions Kagaku Kogaku Ronbunshu, 2003, 29, 294-298.	0.3	4
113	Catalytic and Structural Properties of Surfactant-Horseradish Peroxidase Complex in Organic Media. Biotechnology Progress, 2000, 16, 52-58.	2.6	33
114	Surfactant-histidine-heme ternary complex as a simple artificial heme enzyme in organic media., 1999, 64, 502-506.		11
115	Enantioselective recognition mechanism of secondary alcohol by surfactant-coated lipases in nonaqueous media., 1999, 65, 227-232.		21
116	How Is Enzymatic Selectivity of Menthol Esterification Catalyzed by Surfactant-Coated Lipase Determined in Organic Media?. Biotechnology Progress, 1997, 13, 488-492.	2.6	29
117	Application of Novel Preparation Method for Surfactant-Protease Complexes Catalytically Active in Organic Media. Biotechnology Progress, 1997, 13, 551-556.	2.6	29
118	Enzymatic polymerization catalyzed by surfactant-coated lipases in organic media. Biotechnology Letters, 1997, 19, 307-310.	2.2	49
119	Enantioselective esterification of glycidol by surfactant-lipase complexes in organic media. Biotechnology Letters, 1997, 19, 541-543.	2.2	14
120	Surfactant-horseradish peroxidase complex catalytically active in anhydrous benzene. Biotechnology Letters, 1997, 11, 375-378.	0.5	31
121	Enzymatic resolution of racemic ibuprofen by surfactant-coated lipases in organic media. Biotechnology Letters, 1996, 18, 839-844.	2.2	30
122	Enzymatic interesterification of triglyceride with surfactant-coated lipase in organic media. Biotechnology and Bioengineering, 1995, 45, 27-32.	3.3	58
123	Surfactant-Coated Lipase Suitable for the Enzymic Resolution of Menthol as a Biocatalyst in Organic Media. Biotechnology Progress, 1995, 11, 270-275.	2.6	73
124	Enzymic Esterification by Surfactant-Coated Lipase in Organic Media. Biotechnology Progress, 1994, 10, 263-268.	2.6	93