István Gy Zsély

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5512315/publications.pdf

Version: 2024-02-01

567281 794594 19 808 15 19 citations g-index h-index papers 19 19 19 554 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparison of the performance of several recent hydrogen combustion mechanisms. Combustion and Flame, 2014, 161, 2219-2234.	5.2	144
2	Development of a Joint Hydrogen and Syngas Combustion Mechanism Based on an Optimization Approach. International Journal of Chemical Kinetics, 2016, 48, 407-422.	1.6	122
3	Comparison of the performance of several recent syngas combustion mechanisms. Combustion and Flame, 2015, 162, 1793-1812.	5.2	111
4	Local and Global Uncertainty Analyses of a Methane Flame Model. Journal of Physical Chemistry A, 2005, 109, 9795-9807.	2.5	90
5	Uncertainty of the rate parameters of several important elementary reactions of the H2 and syngas combustion systems. Combustion and Flame, 2015, 162, 2059-2076.	5.2	55
6	Kinetic Analysis of Ethyl Iodide Pyrolysis Based on Shock Tube Measurements. International Journal of Chemical Kinetics, 2014, 46, 295-304.	1.6	39
7	Time scale and dimension analysis of a budding yeast cell cycle model. BMC Bioinformatics, 2006, 7, 494.	2.6	34
8	Determination of rate parameters of key N/H/O elementary reactions based on H2/O2/NOx combustion experiments. Fuel, 2020, 264, 116720.	6.4	34
9	Similarity of Sensitivity Functions of Reaction Kinetic Models. Journal of Physical Chemistry A, 2003, 107, 2216-2238.	2.5	26
10	Kinetic analysis of mechanisms of complex pyrolytic reactions. Journal of Analytical and Applied Pyrolysis, 2007, 79, 252-258.	5.5	24
11	The influence of thermal coupling and diffusion on the importance of reactions: The case study of hydrogen–air combustion. Physical Chemistry Chemical Physics, 2003, 5, 3622-3631.	2.8	23
12	Comparison of Methane Combustion Mechanisms Using Shock Tube and Rapid Compression Machine Ignition Delay Time Measurements. Energy & Energy & 12321, 35, 12329-12351.	5.1	23
13	Numerical investigation of the uncertainty of Arrhenius parameters. Journal of Mathematical Chemistry, 2011, 49, 1798-1809.	1.5	18
14	The importance of chemical mechanisms in sonochemical modelling. Ultrasonics Sonochemistry, 2022, 83, 105925.	8.2	18
15	Formation of NO in High-Temperature N ₂ /O ₂ /H ₂ O Mixtures: Re-evaluation of Rate Coefficients. Energy & Samp; Fuels, 2018, 32, 10114-10120.	5.1	16
16	Main sources of uncertainty in recent methanol/NOx combustion models. International Journal of Chemical Kinetics, 2021, 53, 884-900.	1.6	15
17	Investigation of the correlation of sensitivity vectors of hydrogen combustion models. International Journal of Chemical Kinetics, 2004, 36, 238-252.	1.6	10
18	Design of combustion experiments using differential entropy. Combustion Theory and Modelling, 2022, 26, 67-90.	1.9	4

ISTVÃIN GY ZSéLY

#	Article	IF	CITATIONS
19	Structural analysis of combustion mechanisms. Journal of Mathematical Chemistry, 2015, 53, 86-110.	1.5	2