
Diogo Coelho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/551229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of dietary incorporation of Chlorella vulgaris and CAZyme supplementation on the hepatic proteome of finishing pigs. Journal of Proteomics, 2022, 256, 104504.	2.4	5
2	Impact of Chlorella vulgaris as feed ingredient and carbohydrases on the health status and hepatic lipid metabolism of finishing pigs. Research in Veterinary Science, 2022, 144, 44-53.	1.9	7
3	Recalcitrant cell wall of Ulva lactuca seaweed is degraded by a single ulvan lyase from family 25 of polysaccharide lyases. Animal Nutrition, 2022, 9, 184-192.	5.1	12
4	Dietary <i>Chlorella vulgaris</i> with aÂspecific enzyme mixture enriches pork in potassium and improves its sodium to potassium ratio. British Food Journal, 2022, ahead-of-print, .	2.9	1
5	Influence of Feeding Weaned Piglets with Laminaria digitata on the Quality and Nutritional Value of Meat. Foods, 2022, 11, 1024.	4.3	12
6	Effect of Dietary Laminaria digitata with Carbohydrases on Broiler Production Performance and Meat Quality, Lipid Profile, and Mineral Composition. Animals, 2022, 12, 1007.	2.3	8
7	Combined effects of dietary Laminaria digitata with alginate lyase on plasma metabolites and hepatic lipid, pigment and mineral composition of broilers. BMC Veterinary Research, 2022, 18, 153.	1.9	2
8	Testimony on a successful lab protocol to disrupt Chlorella vulgaris microalga cell wall. PLoS ONE, 2022, 17, e0268565.	2.5	4
9	Effect of dietary inclusion of Spirulina on production performance, nutrient digestibility and meat quality traits in postâ€weaning piglets. Journal of Animal Physiology and Animal Nutrition, 2021, 105, 247-259.	2.2	17
10	Influence of dietary Chlorella vulgaris and carbohydrate-active enzymes on growth performance, meat quality and lipid composition of broiler chickens. Poultry Science, 2021, 100, 926-937.	3.4	37
11	Effects of Chlorella vulgaris as a Feed Ingredient on the Quality and Nutritional Value of Weaned Piglets' Meat. Foods, 2021, 10, 1155.	4.3	13
12	An individual alginate lyase is effective in the disruption of Laminaria digitata recalcitrant cell wall. Scientific Reports, 2021, 11, 9706.	3.3	13
13	Impact of dietary Chlorella vulgaris and carbohydrate-active enzymes incorporation on plasma metabolites and liver lipid composition of broilers. BMC Veterinary Research, 2021, 17, 229.	1.9	7
14	Using Microalgae as a Sustainable Feed Resource to Enhance Quality and Nutritional Value of Pork and Poultry Meat. Foods, 2021, 10, 2933.	4.3	25
15	Quality Traits and Nutritional Value of Pork and Poultry Meat from Animals Fed with Seaweeds. Foods, 2021, 10, 2961.	4.3	13
16	A twoâ€enzyme constituted mixture to improve the degradation of <i>Arthrospira platensis</i> microalga cell wall for monogastric diets. Journal of Animal Physiology and Animal Nutrition, 2020, 104, 310-321.	2.2	29
17	A High Dietary Incorporation Level of Chlorella vulgaris Improves the Nutritional Value of Pork Fat without Impairing the Performance of Finishing Pigs. Animals, 2020, 10, 2384.	2.3	17
18	Current feeding strategies to improve pork intramuscular fat content and its nutritional quality. Advances in Food and Nutrition Research, 2019, 89, 53-94.	3.0	36

DIOGO COELHO

#	Article	IF	CITATIONS
19	Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall. Scientific Reports, 2019, 9, 5382.	3.3	47
20	From Natural Triacylglycerols to Novel Structured Lipids Containing n-3 Long-Chain Polyunsaturated Fatty Acids. , 2019, , 225-235.		1
21	Reduced protein diets increase intramuscular fat of psoas major, a red muscle, in lean and fatty pig genotypes. Animal, 2017, 11, 2094-2102.	3.3	23
22	Microalgae as feed ingredients for livestock production and meat quality: A review. Livestock Science, 2017, 205, 111-121.	1.6	302
23	Arginine supplementation modulates pig plasma lipids, but not hepatic fatty acids, depending on dietary protein level with or without leucine. BMC Veterinary Research, 2017, 13, 145.	1.9	3