Jeremy F Reiter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5512144/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, 2022, 376, eabl4896.	6.0	289
2	Zika virus alters centrosome organization to suppress the innate immune response. EMBO Reports, 2022, 23, .	2.0	4
3	A kinesin mimics DNA. Nature Cell Biology, 2022, 24, 1015-1016.	4.6	0
4	How the centriole builds its cilium: of mothers, daughters, and the acquisition of appendages. Current Opinion in Structural Biology, 2021, 66, 41-48.	2.6	48
5	Smoothened-activating lipids drive resistance to CDK4/6 inhibition in Hedgehog-associated medulloblastoma cells and preclinical models. Journal of Clinical Investigation, 2021, 131, .	3.9	17
6	Melanocortin 4 receptor signals at the neuronal primary cilium to control food intake and body weight. Journal of Clinical Investigation, 2021, 131, .	3.9	41
7	Vertebrate cells differentially interpret ciliary and extraciliary cAMP. Cell, 2021, 184, 2911-2926.e18.	13.5	73
8	Label-retention expansion microscopy. Journal of Cell Biology, 2021, 220, .	2.3	31
9	A ciliopathy complex builds distal appendages to initiate ciliogenesis. Journal of Cell Biology, 2021, 220, .	2.3	26
10	Sterol and oxysterol synthases near the ciliary base activate the Hedgehog pathway. Journal of Cell Biology, 2021, 220, .	2.3	20
11	Ciliary Hedgehog signaling regulates cell survival to build the facial midline. ELife, 2021, 10, .	2.8	4
12	Ciliary Hedgehog signaling patterns the digestive system to generate mechanical forces driving elongation. Nature Communications, 2021, 12, 7186.	5.8	11
13	Endoderm development requires centrioles to restrain p53-mediated apoptosis in the absence of ERK activity. Developmental Cell, 2021, 56, 3334-3348.e6.	3.1	9
14	A transient role of the ciliary gene Inpp5e in controlling direct versus indirect neurogenesis in cortical development. ELife, 2020, 9, .	2.8	18
15	Hedgehog Pathway Activation Alters Ciliary Signaling in Primary Hypothalamic Cultures. Frontiers in Cellular Neuroscience, 2019, 13, 266.	1.8	17
16	Deformed alignment of super-resolution images for semi-flexible structures. PLoS ONE, 2019, 14, e0212735.	1.1	13
17	SFI1 promotes centriole duplication by recruiting USP9X to stabilize the microcephaly protein STIL. Journal of Cell Biology, 2019, 218, 2185-2197.	2.3	18
18	Omega-3 Fatty Acids Activate Ciliary FFAR4 to Control Adipogenesis. Cell, 2019, 179, 1289-1305.e21.	13.5	159

#	Article	IF	CITATIONS
19	Misactivation of Hedgehog signaling causes inherited and sporadic cancers. Journal of Clinical Investigation, 2019, 129, 465-475.	3.9	72
20	How the Ciliary Membrane Is Organized Inside-Out toÂCommunicate Outside-In. Current Biology, 2018, 28, R421-R434.	1.8	123
21	Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nature Genetics, 2018, 50, 180-185.	9.4	175
22	Cilia-Associated Oxysterols Activate Smoothened. Molecular Cell, 2018, 72, 316-327.e5.	4.5	100
23	Brain Somatic Mutations in MTOR Disrupt Neuronal Ciliogenesis, Leading to Focal Cortical Dyslamination. Neuron, 2018, 99, 83-97.e7.	3.8	83
24	Cilia and Obesity. Cold Spring Harbor Perspectives in Biology, 2017, 9, a028217.	2.3	84
25	Dynamic Remodeling of Membrane Composition Drives Cell Cycle through Primary Cilia Excision. Cell, 2017, 168, 264-279.e15.	13.5	273
26	Ciliary Hedgehog Signaling Restricts Injury-Induced Adipogenesis. Cell, 2017, 170, 340-351.e12.	13.5	173
27	Genes and molecular pathways underpinning ciliopathies. Nature Reviews Molecular Cell Biology, 2017, 18, 533-547.	16.1	1,135
28	Open Sesame: How Transition Fibers and the Transition Zone Control Ciliary Composition. Cold Spring Harbor Perspectives in Biology, 2017, 9, a028134.	2.3	218
29	Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways. Developmental Cell, 2017, 43, 744-762.e11.	3.1	92
30	Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes JoubertÂsyndrome. Nature Cell Biology, 2017, 19, 1178-1188.	4.6	138
31	Hedgehog signaling drives medulloblastoma growth via CDK6. Journal of Clinical Investigation, 2017, 128, 120-124.	3.9	55
32	MKS5 and CEP290 Dependent Assembly Pathway of the Ciliary Transition Zone. PLoS Biology, 2016, 14, e1002416.	2.6	98
33	A primer on the mouse basal body. Cilia, 2016, 5, 17.	1.8	41
34	Cell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortex. Cell, 2016, 166, 1147-1162.e15.	13.5	276
35	Endothelial primary cilia inhibit atherosclerosis. EMBO Reports, 2016, 17, 156-166.	2.0	78
36	Microcephaly Proteins Wdr62 and Aspm Define a Mother Centriole Complex Regulating Centriole Biogenesis, Apical Complex, and Cell Fate. Neuron, 2016, 92, 813-828.	3.8	116

#	Article	IF	CITATIONS
37	Centriolar satellites assemble centrosomal microcephaly proteins to recruit CDK2 and promote centriole duplication. ELife, 2015, 4, .	2.8	118
38	Ciliary Vesicle Formation: A Prelude to Ciliogenesis. Developmental Cell, 2015, 32, 665-666.	3.1	17
39	TMEM231, mutated in orofaciodigital and Meckel syndromes, organizes the ciliary transition zone. Journal of Cell Biology, 2015, 209, 129-142.	2.3	95
40	Hair follicle and interfollicular epidermal stem cells make varying contributions to wound regeneration. Cell Cycle, 2015, 14, 3408-3417.	1.3	51
41	Phosphoinositides Regulate Ciliary Protein Trafficking to Modulate Hedgehog Signaling. Developmental Cell, 2015, 34, 400-409.	3.1	274
42	Conserved Genetic Interactions between Ciliopathy Complexes Cooperatively Support Ciliogenesis and Ciliary Signaling. PLoS Genetics, 2015, 11, e1005627.	1.5	71
43	Restricted Access: the Transition Zone Controls Ciliary Composition and Signaling. FASEB Journal, 2015, 29, 78.2.	0.2	1
44	Katanin p80 Regulates Human Cortical Development by Limiting Centriole and Cilia Number. Neuron, 2014, 84, 1240-1257.	3.8	89
45	C2cd3 is critical for centriolar distal appendage assembly and ciliary vesicle docking in mammals. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2164-2169.	3.3	146
46	A central region of Gli2 regulates its localization to the primary cilium and transcriptional activity. Journal of Cell Science, 2014, 127, 1500-10.	1.2	44
47	Hedgehog Signaling Controls T Cell Killing at the Immunological Synapse. Science, 2013, 342, 1247-1250.	6.0	119
48	Kif3a interacts with Dynactin subunit p150Glued to organize centriole subdistal appendages. EMBO Journal, 2013, 32, 597-607.	3.5	73
49	Trask Loss Enhances Tumorigenic Growth by Liberating Integrin Signaling and Growth Factor Receptor Cross-Talk in Unanchored Cells. Cancer Research, 2013, 73, 1168-1179.	0.4	28
50	Thyroid-specific inactivation of KIF3A alters the TSH signaling pathway and leads to hypothyroidism. Journal of Molecular Endocrinology, 2013, 50, 375-387.	1.1	5
51	Polycomb-Like 3 Promotes Polycomb Repressive Complex 2 Binding to CpG Islands and Embryonic Stem Cell Self-Renewal. PLoS Genetics, 2012, 8, e1002576.	1.5	85
52	Small molecule inhibitors of Smoothened ciliary localization and ciliogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13644-13649.	3.3	41
53	Scoring a backstage pass: Mechanisms of ciliogenesis and ciliary access. Journal of Cell Biology, 2012, 197, 697-709.	2.3	221
54	The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Reports, 2012, 13, 608-618.	2.0	420

#	Article	IF	CITATIONS
55	A highâ€fat diet regulates gastrin and acid secretion through primary cilia. FASEB Journal, 2012, 26, 3127-3139.	0.2	44
56	Tectonics form a transition zone complex of ciliopathy proteins that regulate ciliary composition. FASEB Journal, 2012, 26, 84.1.	0.2	0
57	A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nature Genetics, 2011, 43, 776-784.	9.4	556
58	Mapping the NPHP-JBTS-MKS Protein Network Reveals Ciliopathy Disease Genes and Pathways. Cell, 2011, 145, 513-528.	13.5	531
59	Disruption of a Ciliary B9 Protein Complex Causes Meckel Syndrome. American Journal of Human Genetics, 2011, 89, 94-110.	2.6	136
60	The Ciliogenic Protein Oral-Facial-Digital 1 Regulates the Neuronal Differentiation of Embryonic Stem Cells. Stem Cells and Development, 2011, 20, 831-841.	1.1	27
61	Wounding mobilizes hair follicle stem cells to form tumors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4093-4098.	3.3	106
62	<i>Vive la science</i> ! <i>Vive le hérisson</i> !. EMBO Reports, 2010, 11, 566-568.	2.0	0
63	Crippling SWI-SNF makes tumors GLI-ful. Nature Medicine, 2010, 16, 1374-1376.	15.2	3
64	Floxin, a resource for genetically engineering mouse ESCs. Nature Methods, 2010, 7, 50-52.	9.0	26
65	Ofd1, a Human Disease Gene, Regulates the Length and Distal Structure of Centrioles. Developmental Cell, 2010, 18, 410-424.	3.1	239
66	Tilting at Nodal Windmills: Planar Cell Polarity Positions Cilia to Tell Left from Right. Developmental Cell, 2010, 19, 5-6.	3.1	12
67	Polycomb-like 2 Associates with PRC2 and Regulates Transcriptional Networks during Mouse Embryonic Stem Cell Self-Renewal and Differentiation. Cell Stem Cell, 2010, 6, 153-166.	5.2	165
68	Primary cilia can both mediate and suppress Hedgehog pathway–dependent tumorigenesis. Nature Medicine, 2009, 15, 1055-1061.	15.2	431
69	The Extracellular Domain of Smoothened Regulates Ciliary Localization and Is Required for High-Level Hh Signaling. Current Biology, 2009, 19, 1034-1039.	1.8	81
70	Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nature Cell Biology, 2008, 10, 70-76.	4.6	458
71	Chapter 9 The Primary Cilium. Current Topics in Developmental Biology, 2008, 85, 225-260.	1.0	180
72	A Cilium Is Not a Cilium Is Not a Cilium: Signaling Contributes to Ciliary Morphological Diversity. Developmental Cell, 2008, 14, 635-636.	3.1	7

#	Article	IF	CITATIONS
73	Neur-ons and neur-offs: regulators of neural induction in vertebrate embryos and embryonic stem cells. Human Molecular Genetics, 2008, 17, R60-R66.	1.4	54
74	The Primary Cilium as the Cell's Antenna: Signaling at a Sensory Organelle. Science, 2006, 313, 629-633.	6.0	1,012
75	Vesicle transport, cilium formation, and membrane specialization: The origins of a sensory organelle. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18383-18384.	3.3	26
76	Tectonic, a novel regulator of the Hedgehog pathway required for both activation and inhibition. Genes and Development, 2006, 20, 22-27.	2.7	107
77	Vertebrate Smoothened functions at the primary cilium. Nature, 2005, 437, 1018-1021.	13.7	1,317
78	Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Developmental Biology, 2005, 287, 378-389.	0.9	386
79	Bmp2b and Oep Promote Early Myocardial Differentiation through Their Regulation of gata5. Developmental Biology, 2001, 234, 330-338.	0.9	80
80	The Intimate Connection Between Lipids and Hedgehog Signaling. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	8