Masanori Koide

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5511973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibitor of protein kinase N3 suppresses excessive bone resorption in ovariectomized mice. Journal of Bone and Mineral Metabolism, 2022, 40, 251-261.	2.7	1
2	Evidence for the major contribution of remodeling-based bone formation in sclerostin-deficient mice. Bone, 2022, 160, 116401.	2.9	5
3	Angiotensin II Induces Aortic Rupture and Dissection in Osteoprotegerinâ€Deficient Mice. Journal of the American Heart Association, 2022, 11, e025336.	3.7	7
4	Positive and Negative Regulators of Sclerostin Expression. International Journal of Molecular Sciences, 2022, 23, 4895.	4.1	7
5	Osteoclast differentiation by RANKL and OPG signaling pathways. Journal of Bone and Mineral Metabolism, 2021, 39, 19-26.	2.7	293
6	Sclerostin expression in trabecular bone is downregulated by osteoclasts. Scientific Reports, 2020, 10, 13751.	3.3	17
7	Blockade of the angiotensin II type 1 receptor increases bone mineral density and left ventricular contractility in a mouse model of juvenile Paget disease. European Journal of Pharmacology, 2019, 859, 172519.	3.5	3
8	The Regulation of Bone Metabolism and Disorders by Wnt Signaling. International Journal of Molecular Sciences, 2019, 20, 5525.	4.1	214
9	Regulatory mechanisms of sclerostin expression during bone remodeling. Journal of Bone and Mineral Metabolism, 2019, 37, 9-17.	2.7	32
10	Effects of shokyo (<i>Zingiberis Rhizoma</i>) and kankyo (<i>Zingiberis Processum Rhizoma</i>) on prostaglandin E ₂ production in lipopolysaccharide-treated mouse macrophage RAW264.7 cells. PeerJ, 2019, 7, e7725.	2.0	1
11	Bone Formation Is Coupled to Resorption Via Suppression of Sclerostin Expression by Osteoclasts. Journal of Bone and Mineral Research, 2017, 32, 2074-2086.	2.8	55
12	The W9 peptide directly stimulates osteoblast differentiation via RANKL signaling. Journal of Oral Biosciences, 2017, 59, 146-151.	2.2	6
13	A Jak1/2 inhibitor, baricitinib, inhibits osteoclastogenesis by suppressing RANKL expression in osteoblasts in vitro. PLoS ONE, 2017, 12, e0181126.	2.5	68
14	Treatment of OPG-deficient mice with WP9QY, a RANKL-binding peptide, recovers alveolar bone loss by suppressing osteoclastogenesis and enhancing osteoblastogenesis. PLoS ONE, 2017, 12, e0184904.	2.5	31
15	Wnt16 regulates osteoclast differentiation in conjunction with Wnt5a. Biochemical and Biophysical Research Communications, 2015, 463, 1278-1283.	2.1	39
16	The regulation of osteoclast differentiation by Wnt signals. BoneKEy Reports, 2015, 4, 713.	2.7	47
17	Dendritic cell–based immunotherapy targeting Wilms' tumor 1 in patients with recurrent malignant glioma. Journal of Neurosurgery, 2015, 123, 989-997.	1.6	74
18	Roles of cathelicidinâ€related antimicrobial peptide in murine osteoclastogenesis. Immunology, 2013, 140. 344-351.	4.4	28

Masanori Koide

#	Article	IF	CITATIONS
19	Minocycline to be used a potential anti-bone resorption agents due to the suppression of osteoclastic bone resorption. Journal of Oral Biosciences, 2013, 55, 16-22.	2.2	7
20	Osteoprotegerin-Deficient Male Mice as a Model for Severe Alveolar Bone Loss: Comparison With RANKL-Overexpressing Transgenic Male Mice. Endocrinology, 2013, 154, 773-782.	2.8	48
21	Tetracyclines Convert the Osteoclastic-Differentiation Pathway of Progenitor Cells To Produce Dendritic Cell-like Cells. Journal of Immunology, 2012, 188, 1772-1781.	0.8	36
22	Prostaglandin E2 receptor EP4-selective agonist (ONO-4819) increases bone formation by modulating mesenchymal cell differentiation. European Journal of Pharmacology, 2011, 650, 396-402.	3.5	20
23	Osteoclastic bone resorption induced by innate immune responses. Periodontology 2000, 2010, 54, 235-246.	13.4	46
24	ILâ€12 stimulates the osteoclast inhibitory peptideâ€1 (OIPâ€1/hSca) gene expression in CD4+ T cells. Journal of Cellular Biochemistry, 2009, 107, 104-111.	2.6	11
25	Evaluation of Pharmaceuticals With a Novel 50-Hour Animal Model of Bone Loss. Journal of Bone and Mineral Research, 2009, 24, 1194-1205.	2.8	103
26	Diphenylhydantoin Inhibits Osteoclast Differentiation and Function Through Suppression of NFATc1 Signaling. Journal of Bone and Mineral Research, 2009, 24, 1469-1480.	2.8	36
27	The relationship between calcium accumulation in osteoclast mitochondrial granules and bone resorption. Bone, 2009, 45, 980-986.	2.9	18
28	Lipopolysaccharide-Mediated Enhancement of Bone Metabolism in Estrogen-Deficient Mice. Journal of Periodontology, 2008, 79, 2173-2181.	3.4	1
29	Actinobacillus actinomycetemcomitans Y4 capsular polysaccharide induces IL-1beta mRNA expression through the JNK pathway in differentiated THP-1 cells. Clinical and Experimental Immunology, 2005, 141, 261-269.	2.6	11
30	Cytokine Regulation and the Signaling Mechanism of Osteoclast Inhibitory Peptide-1 (OIP-1/hSca) to Inhibit Osteoclast Formation. Journal of Bone and Mineral Research, 2003, 18, 458-465.	2.8	22
31	Identification of the Functional Domain of Osteoclast Inhibitory Peptide-1/hSca. Journal of Bone and Mineral Research, 2002, 17, 111-118.	2.8	10
32	Gingival crevicular interleukin-1 and interleukin-1 receptor antagonist levels in periodontally healthy and diseased sites. Journal of Periodontal Research, 1997, 32, 524-529.	2.7	134