Zhengjia Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5511819/publications.pdf

Version: 2024-02-01

		1163117	996975
16	520	8	15
papers	citations	h-index	g-index
16	16	16	726
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Reassessment of Annamocarya sinesis (Carya sinensis) Taxonomy through Concatenation and Coalescence Phylogenetic Analysis. Plants, 2022, 11, 52.	3.5	3
2	Whole-Transcriptome Analysis Reveals Long Noncoding RNAs Involved in Female Floral Development of Hickory (Carya cathayensis Sarg.). Frontiers in Genetics, 2022, 13, .	2.3	2
3	The water lily genome and the early evolution of flowering plants. Nature, 2020, 577, 79-84.	27.8	238
4	Portal of Juglandaceae: A comprehensive platform for Juglandaceae study. Horticulture Research, 2020, 7, 35.	6.3	22
5	Genome-wide identification of lncRNAs during hickory (Carya cathayensis) flowering. Functional and Integrative Genomics, 2020, 20, 591-607.	3.5	9
6	The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition. GigaScience, 2019, 8, .	6.4	88
7	Selection pressure causes differentiation of the SPL gene family in the Juglandaceae. Molecular Genetics and Genomics, 2019, 294, 1037-1048.	2.1	6
8	MGH: a genome hub for the medicinal plant maca (Lepidium meyenii). Database: the Journal of Biological Databases and Curation, 2018, 2018, .	3.0	5
9	Identification and profiling of conserved and novel microRNAs involved in oil and oleic acid production during embryogenesis in Carya cathayensis Sarg. Functional and Integrative Genomics, 2017, 17, 365-373.	3.5	7
10	Genome-wide comparative analysis of LEAFY promoter sequence in angiosperms. Physiology and Molecular Biology of Plants, 2017, 23, 23-33.	3.1	5
11	Transcriptome Analysis of Genes Involved in Lipid Biosynthesis in the Developing Embryo of Pecan (<i>Carya illinoinensis</i>). Journal of Agricultural and Food Chemistry, 2017, 65, 4223-4236.	5.2	34
12	The mechanism of high contents of oil and oleic acid revealed by transcriptomic and lipidomic analysis during embryogenesis in Carya cathayensis Sarg BMC Genomics, 2016, 17, 113.	2.8	53
13	SVP-like MADS-box protein from Carya cathayensis forms higher-order complexes. Plant Physiology and Biochemistry, 2015, 88, 9-16.	5.8	2
14	Identification of microRNAs differentially expressed involved in male flower development. Functional and Integrative Genomics, 2015, 15, 225-232.	3.5	14
15	Arabidopsis PTD Is Required for Type I Crossover Formation and Affects Recombination Frequency in Two Different Chromosomal Regions. Journal of Genetics and Genomics, 2014, 41, 165-175.	3.9	23

Molecular characterization and expression analysis of the critical floral genes in hickory (Carya) Tj ETQq0 0 0 rgBT /Qyerlock 10 Tf 50 14