Jack L Ferracane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5511758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resin composite—State of the art. Dental Materials, 2011, 27, 29-38.	1.6	1,454
2	Hygroscopic and hydrolytic effects in dental polymer networks. Dental Materials, 2006, 22, 211-222.	1.6	1,045
3	Elution of leachable components from composites. Journal of Oral Rehabilitation, 1994, 21, 441-452.	1.3	574
4	Correlation between hardness and degree of conversion during the setting reaction of unfilled dental restorative resins. Dental Materials, 1985, 1, 11-14.	1.6	539
5	Factors involved in the development of polymerization shrinkage stress in resin-composites: A systematic review. Dental Materials, 2005, 21, 962-970.	1.6	535
6	The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. Journal of Biomedical Materials Research Part B, 1986, 20, 121-131.	3.0	441
7	Developing a more complete understanding of stresses produced in dental composites during polymerization. Dental Materials, 2005, 21, 36-42.	1.6	372
8	Wear and Marginal Breakdown of Composites with Various Degrees of Cure. Journal of Dental Research, 1997, 76, 1508-1516.	2.5	367
9	Self-adhesive resin cements - chemistry, properties and clinical considerations. Journal of Oral Rehabilitation, 2011, 38, 295-314.	1.3	333
10	Resin-based composite performance: Are there some things we can't predict?. Dental Materials, 2013, 29, 51-58.	1.6	307
11	Rate of elution of leachable components from composite. Dental Materials, 1990, 6, 282-287.	1.6	302
12	3D printed versus conventionally cured provisional crown and bridge dental materials. Dental Materials, 2018, 34, 192-200.	1.6	296
13	Filler features and their effects on wear and degree of conversion of particulate dental resin composites. Biomaterials, 2005, 26, 4932-4937.	5.7	271
14	Fourier Transform Infrared Analysis of Degree of Polymerization in Unfilled Resins—Methods Comparison. Journal of Dental Research, 1984, 63, 1093-1095.	2.5	265
15	The Effects of Adhesive Thickness on Polymerization Contraction Stress of Composite. Journal of Dental Research, 2000, 79, 812-817.	2.5	262
16	How should composite be layered to reduce shrinkage stress: Incremental or bulk filling?. Dental Materials, 2008, 24, 1501-1505.	1.6	239
17	Reduction of polymerization contraction stress for dental composites by two-step light-activation. Dental Materials, 2002, 18, 436-444.	1.6	237
18	Placing Dental Composites—A Stressful Experience. Operative Dentistry, 2008, 33, 247-257.	0.6	237

#	Article	IF	CITATIONS
19	A Comparison of Four Modes of Evaluating Depth of Cure of Light-activated Composites. Journal of Dental Research, 1987, 66, 727-730.	2.5	234
20	Comparison of CaOH with MTA for Direct Pulp Capping. Journal of Dental Research, 2013, 92, S16-S22.	2.5	231
21	Dentine as a bioactive extracellular matrix. Archives of Oral Biology, 2012, 57, 109-121.	0.8	216
22	Post-cure heat treatments for composites: properties and fractography. Dental Materials, 1992, 8, 290-295.	1.6	197
23	Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites. Dental Materials, 2010, 26, 1144-1150.	1.6	193
24	ASSESSING THE EFFECT OF COMPOSITE FORMULATION ON POLYMERIZATION STRESS. Journal of the American Dental Association, 2000, 131, 497-503.	0.7	188
25	A <scp>lternatives in</scp> P <scp>olymerization</scp> C <scp>ontraction</scp> S <scp>tress</scp> M <scp>anagement</scp> . Critical Reviews in Oral Biology and Medicine, 2004, 15, 176-184.	4.4	181
26	Influence of surface treatments on the bond strength of repaired resin composite restorative materials. Dental Materials, 2009, 25, 442-451.	1.6	168
27	Polymerization stress – Is it clinically meaningful?. Dental Materials, 2016, 32, 1-10.	1.6	166
28	Light-Curing Units. Journal of Dental Research, 2015, 94, 1179-1186.	2.5	165
29	Effect of layering methods, composite type, and flowable liner on the polymerization shrinkage stress of light cured composites. Dental Materials, 2012, 28, 801-809.	1.6	164
30	Influence of photoinitiator type on the rate of polymerization, degree of conversion, hardness and yellowing of dental resin composites. Dental Materials, 2008, 24, 1169-1177.	1.6	161
31	Effect of filler fraction and filler surface treatment on wear of microfilled composites. Dental Materials, 2002, 18, 1-11.	1.6	157
32	Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry. Dental Materials, 2018, 34, 389-399.	1.6	154
33	Evaluation of composite wear with a new multi-mode oral wear simulator. Dental Materials, 1996, 12, 218-226.	1.6	151
34	Properties of a glass-ionomer/resin-composite hybrid material. Dental Materials, 1989, 5, 355-358.	1.6	149
35	Photoinitiator type and applicability of exposure reciprocity law in filled and unfilled photoactive resins. Dental Materials, 2011, 27, 157-164.	1.6	147
36	Contraction stress of flowable composite materials and their efficacy as stress-relieving layers. Journal of the American Dental Association, 2003, 134, 721-728.	0.7	145

#	Article	IF	CITATIONS
37	Solvent Degradation and Reduced Fracture Toughness in Aged Composites. Journal of Dental Research, 1992, 71, 13-19.	2.5	143
38	Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dental Materials, 2016, 32, 73-81.	1.6	140
39	Variables Affecting the Fracture Toughness of Dental Composites. Journal of Dental Research, 1987, 66, 1140-1145.	2.5	138
40	BisGMA/TEGDMA ratio and filler content effects on shrinkage stress. Dental Materials, 2011, 27, 520-526.	1.6	137
41	A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry. Biofabrication, 2018, 10, 024101.	3.7	135
42	Sorption, solubility, shrinkage and mechanical properties of "low-shrinkage―commercial resin composites. Dental Materials, 2013, 29, 398-404.	1.6	132
43	The role of polymerization in adhesive dentistry. Dental Materials, 2019, 35, e1-e22.	1.6	132
44	Flexural strength and Weibull analysis of a microhybrid and a nanofill composite evaluated by 3- and 4-point bending tests. Dental Materials, 2008, 24, 426-431.	1.6	128
45	Ultraviolet light-induced yellowing of dental restorative resins. Journal of Prosthetic Dentistry, 1985, 54, 483-487.	1.1	127
46	The Effect of Different Polishing Systems on Surface Roughness and Gloss of Various Resin Composites. Journal of Esthetic and Restorative Dentistry, 2007, 19, 214-224.	1.8	124
47	Rapid fabrication of vascularized and innervated cell-laden bone models with biomimetic intrafibrillar collagen mineralization. Nature Communications, 2019, 10, 3520.	5.8	124
48	Fracture Toughness of Experimental Dental Composites Aged in Ethanol. Journal of Dental Research, 1995, 74, 1418-1423.	2.5	119
49	Cracked Teeth: A Review of the Literature. Journal of Esthetic and Restorative Dentistry, 2010, 22, 158-167.	1.8	119
50	Relationship between composite contraction stress and leakage in Class V cavities. American Journal of Dentistry, 2003, 16, 239-43.	0.1	116
51	Curing efficiency of dental resin composites formulated with camphorquinone or trimethylbenzoyl-diphenyl-phosphine oxide. Dental Materials, 2012, 28, 392-397.	1.6	114
52	Factors Involved in Mechanical Fatigue Degradation of Dental Resin Composites. Journal of Dental Research, 2013, 92, 584-591.	2.5	114
53	Academy of Dental Materials guidance—Resin composites: Part II—Technique sensitivity (handling,) Tj ETQq1 I	1 0.78431	4 rgBT /Over 194
54	Effect of energy density on properties and marginal integrity of posterior resin composite	1.6	113

restorations. Dental Materials, 2004, 20, 96-106.

#	Article	IF	CITATIONS
55	Abrasive wear of resin composites as related to finishing and polishing procedures. Dental Materials, 2005, 21, 641-648.	1.6	111
56	Can interaction of materials with the dentin-pulp complex contribute to dentin regeneration?. Odontology / the Society of the Nippon Dental University, 2010, 98, 2-14.	0.9	110
57	Relationship between shade and depth of cure for light-activated dental composite resins. Dental Materials, 1986, 2, 80-84.	1.6	105
58	Microstructural characterization and fracture behavior of a microhybrid and a nanofill composite. Dental Materials, 2008, 24, 1281-1288.	1.6	104
59	Mechanical performance of novel bioactive glass containing dental restorative composites. Dental Materials, 2013, 29, 1139-1148.	1.6	101
60	Polymerization contraction stress in dual-cure cements and its effect on interfacial integrity of bonded inlays. Journal of Dentistry, 2002, 30, 333-340.	1.7	99
61	Contraction stress of low-shrinkage composite materials assessed with different testing systems. Dental Materials, 2010, 26, 947-953.	1.6	99
62	A Novel Strategy to Engineer Pre-Vascularized Full-Length Dental Pulp-like Tissue Constructs. Scientific Reports, 2017, 7, 3323.	1.6	98
63	Is the wear of dental composites still a clinical concern?Is there still a need for in vitro wear simulating devices?. Dental Materials, 2006, 22, 689-692.	1.6	97
64	Properties of heat-treated composites after aging in water. Dental Materials, 1995, 11, 354-358.	1.6	92
65	Effect of different photoinitiators and reducing agents on cure efficiency and color stability of resin-based composites using different LED wavelengths. Journal of Dentistry, 2015, 43, 1565-1572.	1.7	91
66	Reduction of composite contraction stress through non-bonded microfiller particles. Dental Materials, 1998, 14, 256-260.	1.6	90
67	Reduced polymerization stress through non-bonded nanofiller particles. Biomaterials, 2002, 23, 3807-3815.	5.7	90
68	In vitro biofilm formation on resin-based composites after different finishing and polishing procedures. Journal of Dentistry, 2017, 67, 43-52.	1.7	90
69	The effect of various dentifrices on surface roughness and gloss of resin composites. Journal of Dentistry, 2010, 38, e123-e128.	1.7	89
70	Quantum yield of conversion of the photoinitiator camphorquinone. Dental Materials, 2007, 23, 655-664.	1.6	88
71	Effects of resin formulation and nanofiller surface treatment on the properties of experimental hybrid resin composite. Biomaterials, 2004, 25, 4065-4071.	5.7	83
72	The in vitro cytotoxicity of eluates from dentin bonding resins and their effect on tyrosine phosphorylation of L929 cells. Dental Materials, 2001, 17, 333-339.	1.6	80

#	Article	IF	CITATIONS
73	Properties of Packable Dental Composites. Journal of Esthetic and Restorative Dentistry, 2000, 12, 216-226.	1.8	76
74	Contraction Stress Determinants in Dimethacrylate Composites. Journal of Dental Research, 2008, 87, 367-371.	2.5	76
75	Evaluation of Different Methods of Optical Impression Making on the Marginal Gap of Onlays Created with CEREC 3D. Operative Dentistry, 2010, 35, 324-329.	0.6	76
76	Comparison of four modes of fracture toughness testing for dental composites. Dental Materials, 1996, 12, 38-43.	1.6	72
77	The Effects of Surface Roughness of Composite Resin on Biofilm Formation of Streptococcus mutans in the Presence of Saliva. Operative Dentistry, 2012, 37, 532-539.	0.6	72
78	Determination of the optimal photoinitiator concentration in dental composites based on essential material properties. Dental Materials, 2009, 25, 994-1000.	1.6	71
79	Ion release from, and fluoride recharge of a composite with a fluoride-containing bioactive glass. Dental Materials, 2014, 30, 1187-1194.	1.6	71
80	Wear and fatigue behavior of nano-structured dental resin composites. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 78B, 196-203.	1.6	70
81	Comparison of At-home and In-office Tooth Whitening Using a Novel Shade Guide. Operative Dentistry, 2010, 35, 381-388.	0.6	70
82	Effect of co-initiator ratio on the polymer properties of experimental resin composites formulated with camphorquinone and phenyl-propanedione. Dental Materials, 2009, 25, 369-375.	1.6	68
83	Effect of shrinkage strain, modulus, and instrument compliance on polymerization shrinkage stress of light-cured composites during the initial curing stage. Dental Materials, 2010, 26, 1024-1033.	1.6	67
84	In vitro evaluation of the marginal degradation of dental composites under simulated occlusal loading. Dental Materials, 1999, 15, 262-267.	1.6	66
85	Factors effecting dental composite wearin vitro. , 1997, 38, 303-313.		65
86	Measurement and comparison of bracket transfer accuracy of five indirect bonding techniques. Angle Orthodontist, 2014, 84, 607-614.	1.1	63
87	Factors Affecting Photopolymerization Stress in Dental Composites. Journal of Dental Research, 2008, 87, 1043-1047.	2.5	62
88	Influence of instrument compliance and specimen thickness on the polymerization shrinkage stress measurement of light-cured composites. Dental Materials, 2007, 23, 1093-1100.	1.6	60
89	Fluoride-containing adhesive: Durability on dentin bonding. Dental Materials, 2009, 25, 1383-1391.	1.6	60
90	Biomimetic dentin desensitizer based on nano-structured bioactive glass. Dental Materials, 2011, 27, 386-393.	1.6	60

#	Article	IF	CITATIONS
91	Time-dependent Deformation of Composite Resins — Compositional Considerations. Journal of Dental Research, 1985, 64, 1332-1336.	2.5	58
92	Cytotoxicity of resin composites containing bioactive glass fillers. Dental Materials, 2015, 31, 195-203.	1.6	58
93	Cyclic mechanical loading promotes bacterial penetration along composite restoration marginal gaps. Dental Materials, 2015, 31, 702-710.	1.6	57
94	Kinetics of polymerization and contraction stress development in self-adhesive resin cements. Dental Materials, 2012, 28, 1032-1039.	1.6	54
95	R-curve behavior and toughening mechanisms of resin-based dental composites: Effects of hydration and post-cure heat treatment. Dental Materials, 2009, 25, 760-770.	1.6	53
96	R-curve behavior and micromechanisms of fracture in resin based dental restorative composites. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2, 502-511.	1.5	53
97	Evaluation of Subsurface Defects Created During the Finishing of Composites. Journal of Dental Research, 1992, 71, 1628-1632.	2.5	52
98	Influence of the antagonist material on the wear of different composites using two different wear simulation methods. Dental Materials, 2006, 22, 166-175.	1.6	52
99	Comparison of Two At-home Whitening Products of Similar Peroxide Concentration and Different Delivery Methods. Operative Dentistry, 2012, 37, 333-339.	0.6	52
100	A pilot study of a simple photon migration model for predicting depth of cure in dental composite. Dental Materials, 2005, 21, 1075-1086.	1.6	51
101	Stress transfer from polymerization shrinkage of a chemical-cured composite bonded to a pre-cast composite substrate. Dental Materials, 1998, 14, 106-111.	1.6	50
102	The tooth on-a-chip: a microphysiologic model system mimicking the biologic interface of the tooth with biomaterials. Lab on A Chip, 2020, 20, 405-413.	3.1	50
103	Dissolution of Mercury from Amalgam into Saline Solution. Journal of Dental Research, 1987, 66, 33-37.	2.5	47
104	Thio-urethanes Improve Properties of Dual-cured Composite Cements. Journal of Dental Research, 2014, 93, 1320-1325.	2.5	47
105	Modulated photoactivation methods: Influence on contraction stress, degree of conversion and push-out bond strength of composite restoratives. Journal of Dentistry, 2007, 35, 318-324.	1.7	44
106	Spotlight on bond strength testing—Unraveling the complexities. Dental Materials, 2011, 27, 1197-1203.	1.6	44
107	Effect of Different In Vitro Aging Methods on Color Stability of a Dental Resinâ€Based Composite Using <scp>CIELAB</scp> and <scp>CIEDE</scp> 2000 Colorâ€Difference Formulas. Journal of Esthetic and Restorative Dentistry, 2015, 27, 322-330.	1.8	44
108	Effect of bioactive glass-containing resin composite on dentin remineralization. Journal of Dentistry, 2018, 75, 58-64.	1.7	44

#	Article	IF	CITATIONS
109	Alternative monomer for BisGMA-free resin composites formulations. Dental Materials, 2020, 36, 884-892.	1.6	42
110	Cytotoxicity of Amalgams. Journal of Dental Research, 1988, 67, 1221-1224.	2.5	41
111	Surface Roughness and Gloss of Actual Composites as Polished With Different Polishing Systems. Operative Dentistry, 2015, 40, 418-429.	0.6	41
112	Influence of the Compliance and Layering Method on the Wall Deflection of Simulated Cavities in Bulk-fill Composite Restoration. Operative Dentistry, 2016, 41, e183-e194.	0.6	41
113	Effect of Light Power Density on Development of Elastic Modulus of a Model Light-Activated Composite during Polymerization. Journal of Esthetic and Restorative Dentistry, 2001, 13, 121-130.	1.8	40
114	Measuring the residual stress in dental composites using a ring slitting method. Dental Materials, 2005, 21, 882-889.	1.6	40
115	Contraction stress and physical properties development of a resin-based composite irradiated using modulated curing methods at two C-factor levels. Dental Materials, 2008, 24, 392-398.	1.6	39
116	Slumping tendency and rheological properties of flowable composites. Dental Materials, 2010, 26, 443-448.	1.6	39
117	Fluoride penetration into the hybrid layer from a dentin adhesive. American Journal of Dentistry, 1998, 11, 23-8.	0.1	39
118	Cytotoxicity of amalgams, alloys, and their elements and phases. Dental Materials, 1991, 7, 68-72.	1.6	38
119	Comparison of Two-Step Versus Four-Step Composite Finishing/Polishing Disc Systems: Evaluation of a New Two-Step Composite Polishing Disc System. Operative Dentistry, 2011, 36, 205-212.	0.6	38
120	The effect of combining photoinitiator systems on the color and curing profile of resin-based composites. Dental Materials, 2016, 32, 1209-1217.	1.6	38
121	Carbon-Based Solid-State Calcium Ion-Selective Microelectrode and Scanning Electrochemical Microscopy: A Quantitative Study of pH-Dependent Release of Calcium Ions from Bioactive Glass. Analytical Chemistry, 2016, 88, 3218-3226.	3.2	38
122	Rheology of Composite Restoratives. Journal of Dental Research, 1981, 60, 1678-1685.	2.5	37
123	Effectiveness of Oxide Films in Reducing Mercury Release from Amalgams. Journal of Dental Research, 1992, 71, 1151-1155.	2.5	37
124	Does Adhesive Thickness Affect Resin-dentin Bond Strength After Thermal/Load Cycling?. Operative Dentistry, 2009, 34, 58-64.	0.6	37
125	Calculation of contraction stresses in dental composites by analysis of crack propagation in the matrix surrounding a cavity. Dental Materials, 2009, 25, 543-550.	1.6	37
126	Mechanistic aspects of fatigue crack growth behavior in resin based dental restorative composites. Dental Materials, 2009, 25, 909-916.	1.6	37

#	Article	IF	CITATIONS
127	Alternative photoinitiator system reduces the rate of stress development without compromising the final properties of the dental composite. Dental Materials, 2009, 25, 566-572.	1.6	36
128	Effects of cavity configuration on composite restoration. Operative Dentistry, 2004, 29, 462-9.	0.6	35
129	Depth of cure of visible light-cured resin: Clinical simulation. Journal of Prosthetic Dentistry, 1986, 55, 574-578.	1.1	34
130	Surface Characterization of Amalgams Using X-ray Photoelectron Spectroscopy. Journal of Dental Research, 1987, 66, 1470-1478.	2.5	34
131	Slumping resistance and viscoelasticity prior to setting of dental composites. Dental Materials, 2008, 24, 1586-1593.	1.6	34
132	Comparison of Various Resin Composite Shades and Layering Technique with a Shade Guide. Journal of Esthetic and Restorative Dentistry, 2010, 22, 114-124.	1.8	34
133	Time-dependent Dissolution of Amalgams into Saline Solution. Journal of Dental Research, 1987, 66, 1331-1335.	2.5	33
134	Shear bond strength of four commercial bonding systems to cpTi. Dental Materials, 1995, 11, 82-86.	1.6	33
135	Dynamic mechanical analysis of storage modulus development in light-activated polymer matrix composites. Dental Materials, 2002, 18, 197-202.	1.6	33
136	Novel Biomaterials and Technologies for the Dental, Oral, and Craniofacial Structures. Journal of Dental Research, 2014, 93, 1185-1186.	2.5	33
137	Comparative study of hydroxyapatite and titanium dental implants in dogs. Journal of Oral and Maxillofacial Surgery, 1990, 48, 1265-1273.	0.5	32
138	Pulse-delay Curing: Influence of Initial Irradiance and Delay Time on Shrinkage Stress and Microhardness of Restorative Composites. Operative Dentistry, 2006, 31, 610-615.	0.6	32
139	Mercury Vaporization from Amalgams with Varied Alloy Compositions. Journal of Dental Research, 1995, 74, 1414-1417.	2.5	31
140	Contraction stresses in dental composites adjacent to and at the bonded interface as measured by crack analysis. Acta Biomaterialia, 2011, 7, 417-423.	4.1	31
141	A comparative study between crack analysis and a mechanical test for assessing the polymerization stress of restorative composites. Dental Materials, 2012, 28, 632-641.	1.6	31
142	Dentin matrix components extracted with phosphoric acid enhance cell proliferation and mineralization. Dental Materials, 2016, 32, 334-342.	1.6	31
143	Thermographic analysis of the effect of composite type, layering method, and curing light on the temperature rise of photo-cured composites in tooth cavities. Dental Materials, 2017, 33, e373-e383.	1.6	31
144	Effect of Crystallization Firing on Marginal Gap of CAD/CAM Fabricated Lithium Disilicate Crowns. Journal of Prosthodontics, 2018, 27, 63-66.	1.7	31

#	Article	IF	CITATIONS
145	In vitro biofilm formation on resin-based composites cured under different surface conditions. Journal of Dentistry, 2018, 77, 78-86.	1.7	31
146	Mercury release from dental amalgams into continuously replenished liquids. Dental Materials, 2003, 19, 38-45.	1.6	30
147	Detection of dentinal cracks using contrast-enhanced micro-computed tomography. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 223-227.	1.5	30
148	Water Aging Reverses Residual Stresses in Hydrophilic Dental Composites. Journal of Dental Research, 2014, 93, 195-200.	2.5	30
149	Antibacterial, ester-free monomers: Polymerization kinetics, mechanical properties, biocompatibility and anti-biofilm activity. Acta Biomaterialia, 2019, 100, 132-141.	4.1	30
150	Dentin matrix component solubilization by solutions of pH relevant to self-etching dental adhesives. Journal of Adhesive Dentistry, 2013, 15, 407-12.	0.3	30
151	Real-time measurement of dentinal fluid flow during amalgam and composite restoration. Journal of Dentistry, 2010, 38, 343-351.	1.7	28
152	A comparative evaluation of polymerization stress data obtained with four different mechanical testing systems. Dental Materials, 2012, 28, 680-686.	1.6	28
153	Use of (meth)acrylamides as alternative monomers in dental adhesive systems. Dental Materials, 2019, 35, 686-696.	1.6	28
154	Quantitation of total mercury vapor released during dental procedures. Dental Materials, 1992, 8, 176-180.	1.6	27
155	A dual-ink 3D printing strategy to engineer pre-vascularized bone scaffolds in-vitro. Materials Science and Engineering C, 2021, 123, 111976.	3.8	27
156	Properties of posterior composites: Results of round robin testing for a specification. Dental Materials, 1994, 10, 92-99.	1.6	26
157	Acoustic Emission Analysis of Tooth-Composite Interfacial Debonding. Journal of Dental Research, 2013, 92, 76-81.	2.5	26
158	Degradation of optical and surface properties of resin-based composites with distinct nanoparticle sizes but equivalent surface area. Journal of Dentistry, 2017, 59, 48-53.	1.7	26
159	Associations of types of pain with crack-level, tooth-level and patient-level characteristics in posterior teeth with visible cracks: Findings from the National Dental Practice-Based Research Network. Journal of Dentistry, 2018, 70, 67-73.	1.7	26
160	The light-curing unit: An essential piece of dental equipment. International Dental Journal, 2020, 70, 407-417.	1.0	26
161	In Vitro Wear Simulation Measurements of Composite versus Resin-Modified Glass Ionomer Luting Cements for All-Ceramic Restorations. Journal of Esthetic and Restorative Dentistry, 2002, 14, 368-376.	1.8	25
162	Dynamic and static strength of an implant-supported overdenture model reinforced with metal and nonmetal strengtheners. Journal of Prosthetic Dentistry, 2011, 106, 297-304.	1.1	25

#	Article	IF	CITATIONS
163	Microstructural Features of Current Resin Composite Materials. Current Oral Health Reports, 2014, 1, 205-212.	0.5	25
164	Correlation between symptoms and external characteristics of cracked teeth. Journal of the American Dental Association, 2017, 148, 246-256.e1.	0.7	25
165	Reduced Mercury Vapor Release from Dental Amalgams Prepared with Binary Hg-In Liquid Alloys. Journal of Dental Research, 1994, 73, 1711-1716.	2.5	24
166	What's in a dental practice-based research network?. Journal of the American Dental Association, 2010, 141, 889-899.	0.7	24
167	Comparison of Push-out Bond Strengths of Resilon with Three Different Sealers. Journal of Endodontics, 2010, 36, 318-321.	1.4	24
168	Effect of Nanofiller Loading on Cure Efficiency and Potential Color Change of Model Composites. Journal of Esthetic and Restorative Dentistry, 2016, 28, 171-177.	1.8	24
169	Photoinitiator content in restorative composites: influence on degree of conversion, reaction kinetics, volumetric shrinkage and polymerization stress. American Journal of Dentistry, 2009, 22, 206-10.	0.1	24
170	Alternatives in polymerization contraction stress management. Journal of Applied Oral Science, 2004, 12, 1-11.	0.7	23
171	Effects of resin formulation and nanofiller surface treatment onin vitro wear of experimental hybrid resin composite. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 77B, 120-125.	1.6	23
172	Influence of biofilm formation on the optical properties of novel bioactive glass-containing composites. Dental Materials, 2016, 32, 1144-1151.	1.6	23
173	In vitro wear of resin-based materials—Simultaneous corrosive and abrasive wear. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 78B, 105-114.	1.6	22
174	Recommended treatment of cracked teeth: Results from the National Dental Practice-Based Research Network. Journal of Prosthetic Dentistry, 2020, 123, 71-78.	1.1	22
175	Effect of light activation method on flexural properties of dental composites. American Journal of Dentistry, 2003, 16, 318-22.	0.1	22
176	A comparative study of the bond strengths of amalgam and alloy?glass ionomer cores. Journal of Oral Rehabilitation, 1989, 16, 301-307.	1.3	21
177	Marginal leakage in class V composite resin restorations with glass ionomer liners in vitro. Journal of Prosthetic Dentistry, 1990, 63, 522-525.	1.1	20
178	Effect of admixed high-density polyethylene (HDPE) spheres on contraction stress and properties of experimental composites. Journal of Biomedical Materials Research Part B, 2003, 66B, 318-323.	3.0	19
179	Biofilm formation affects surface properties of novel bioactive glass-containing composites. Dental Materials, 2015, 31, 1599-1608.	1.6	19
180	Influence of increment thickness on radiant energy and microhardness of bulk-fill resin composites. Dental Materials Journal, 2018, 37, 206-213.	0.8	19

#	Article	IF	CITATIONS
181	Toughening of Dental Composites with Thiourethane-Modified Filler Interfaces. Scientific Reports, 2019, 9, 2286.	1.6	19
182	Probing the hierarchy of evidence to identify the best strategy for placing class II dental composite restorations using current materials. Journal of Esthetic and Restorative Dentistry, 2021, 33, 39-50.	1.8	19
183	Preparing Practicing Dentists to Engage in Practice-Based Research. Journal of the American Dental Association, 2008, 139, 339-345.	0.7	18
184	Polymerization stresses in low-shrinkage dental resin composites measured by crack analysis. Dental Materials, 2012, 28, e143-e149.	1.6	18
185	Composite polymerization stress as a function of specimen configuration assessed by crack analysis and finite element analysis. Dental Materials, 2013, 29, 1026-1033.	1.6	18
186	Development and maintenance of surface gloss of dental composites after polishing and brushing: Review of the literature. Journal of Esthetic and Restorative Dentistry, 2022, 34, 15-41.	1.8	18
187	In vitro wear of primary and permanent enamel. Simultaneous erosion and abrasion. American Journal of Dentistry, 2007, 20, 394-9.	0.1	18
188	Effect of heat on the flow of commercial composites. American Journal of Dentistry, 2009, 22, 92-6.	0.1	18
189	Sol-gel-derived bioactive glasses demonstrate antimicrobial effects on common oral bacteria. American Journal of Dentistry, 2015, 28, 111-5.	0.1	18
190	Residual Stress in Composites with the Thin-ring-slitting Approach. Journal of Dental Research, 2006, 85, 945-949.	2.5	17
191	Association between caries location and restorative material treatment provided. Journal of Dentistry, 2011, 39, 302-308.	1.7	17
192	Comparison of Efficacy of an In-Office Whitening System Used with and without a Whitening Priming Agent. Journal of Esthetic and Restorative Dentistry, 2011, 23, 97-104.	1.8	17
193	Acoustic emission analysis of the effect of simulated pulpal pressure and cavity type on the tooth–composite interfacial de-bonding. Dental Materials, 2014, 30, 876-883.	1.6	17
194	Effect of pulse-width-modulated LED light on the temperature change of composite in tooth cavities. Dental Materials, 2019, 35, 554-563.	1.6	17
195	Introduction to and outcomes of the conference on adhesion in dentistry. Dental Materials, 2010, 26, 105-107.	1.6	16
196	Porcelain Surface Alterations and Refinishing After Use of Two Orthodontic Bonding Methods. Angle Orthodontist, 2010, 80, 167-174.	1.1	16
197	Shedding light on a potential hazard. Journal of the American Dental Association, 2019, 150, 1051-1058.	0.7	16
198	Methacrylamide–methacrylate hybrid monomers for dental applications. Dental Materials, 2020, 36, 1028-1037.	1.6	16

12

#	Article	IF	CITATIONS
199	Fractography of clinical failures of indirect resin composite endocrown and overlay restorations. Dental Materials, 2021, 37, e341-e359.	1.6	16
200	Evaluation of glass-cermet cores under cast crowns. Dental Materials, 1990, 6, 129-132.	1.6	15
201	Degree of Conversion and Contraction Stress Development of a Resin Composite Irradiated Using Halogen and LED at Two C-factor Levels. Operative Dentistry, 2009, 34, 24-31.	0.6	15
202	Spatio-temporal analysis of shrinkage vectors during photo-polymerization of composite. Dental Materials, 2013, 29, 1236-1243.	1.6	15
203	Enhanced evaporation of mercury from amalgams in non-oxidizing environments. Dental Materials, 1993, 9, 300-305.	1.6	14
204	Effect of pulse width modulation-controlled LED light on the polymerization of dental composites. Dental Materials, 2018, 34, 1836-1845.	1.6	14
205	Effect of residual solvent on performance of acrylamide-containing dental materials. Dental Materials, 2019, 35, 1378-1387.	1.6	14
206	Thermal analysis of amalgams. Dental Materials, 1988, 4, 307-311.	1.6	13
207	Initial dynamic viscoelasticity change of composites during light curing. Dental Materials, 2010, 26, 463-470.	1.6	13
208	Synthesis of di- and triacrylamides with tertiary amine cores and their evaluation as monomers in dental adhesive interfaces. Acta Biomaterialia, 2020, 115, 148-159.	4.1	13
209	Influence of the organic matrix composition on the polymerization behavior and bulk properties of resin composites containing thiourethane-functionalized fillers. European Polymer Journal, 2020, 130, 109664.	2.6	12
210	Visually acceptable gloss threshold for resin composite and polishing systems. Journal of the American Dental Association, 2021, 152, 385-392.	0.7	12
211	Three Cements Used for Orthodontic Banding of Porcelain Molars. Angle Orthodontist, 2007, 77, 94-99.	1.1	11
212	Symptom changes and crack progression in untreated cracked teeth: One-year findings from the National Dental Practice-Based Research Network. Journal of Dentistry, 2020, 93, 103269.	1.7	11
213	Cyclic voltammetry of dental amalgams. Dental Materials, 1996, 12, 154-160.	1.6	10
214	Initial mercury evaporation from experimental Ag–Sn–Cu amalgams containing Pd. Biomaterials, 2004, 25, 3147-3153.	5.7	10
215	Effect of shade, opacity and layer thickness on light transmission through a nanoâ€hybrid dental composite during curing. Journal of Esthetic and Restorative Dentistry, 2017, 29, 362-367.	1.8	10
216	Methacrylate saccharide-based monomers for dental adhesive systems. International Journal of Adhesion and Adhesives, 2018, 87, 1-11.	1.4	10

#	Article	IF	CITATIONS
217	Crown retention: a comparative study of core type and luting agent. Dental Materials, 1987, 3, 71-73.	1.6	9
218	In vitro wear evaluation of dental materials in primary teeth. American Journal of Dentistry, 2006, 19, 364-9.	0.1	9
219	Rheology of Acrylic Bone Cements. Biomaterials, Medical Devices, and Artificial Organs, 1981, 9, 213-224.	0.4	8
220	Dr. Ferracane replies. Journal of Dental Research, 1988, 67, 884-885.	2.5	8
221	CONTROLLED CLINICAL TRIALS AND PRACTICE-BASED RESEARCH IN DENTISTRY. Journal of Dental Research, 2008, 87, 800-801.	2.5	8
222	Effects of particulate filler systems on the properties and performance of dental polymer composites. , 2013, , 294-335.		8
223	Ensuring the Global Availability of High-quality Dental Restorative Materials. Advances in Dental Research, 2013, 25, 41-45.	3.6	8
224	The mechanical behavior of the material-tissue and material-material interface in dental reconstructions. International Journal of Adhesion and Adhesives, 2016, 69, 2-14.	1.4	8
225	Equivalence of human and bovine dentin matrix molecules for dental pulp regeneration: proteomic analysis and biological function. Archives of Oral Biology, 2020, 119, 104888.	0.8	8
226	Navigating the Dentin Bond Strength Testing Highway: Lessons and Recommendations. Journal of Adhesion Science and Technology, 2009, 23, 1007-1022.	1.4	7
227	Observable characteristics coincident with internal cracks in teeth. Journal of the American Dental Association, 2018, 149, 885-892.e6.	0.7	6
228	Incorporation of Apigenin and tt-Farnesol into dental composites to modulate the Streptococcus mutans virulence. Dental Materials, 2021, 37, e201-e212.	1.6	6
229	Flexural fatigue strength of CAD/CAM composite material and dual-cured resin luting cements. American Journal of Dentistry, 2003, 16, 177-80.	0.1	6
230	Comparative study of luting agents with composite resin cores. Journal of Prosthetic Dentistry, 1989, 62, 527-529.	1.1	5
231	Effectiveness of high irradiance for short-time exposures on polymerization of composite under metal brackets. Angle Orthodontist, 2017, 87, 834-840.	1.1	5
232	Surface Deterioration of Indirect Restorative Materials. Brazilian Dental Journal, 2020, 31, 264-271.	0.5	5
233	Real-time monitoring of the pH microenvironment at the interface of multispecies biofilm and dental composites. Analytica Chimica Acta, 2022, 1201, 339589.	2.6	5
234	Effects of thermocycling on amalgam and alloy-glass ionomer cores luted to cast gold crowns. Dental Materials, 1988, 4, 155-157.	1.6	4

#	Article	IF	CITATIONS
235	Vaporization of Hg from Hg–In amalgams during setting and after abrasion. Dental Materials, 1999, 15, 191-195.	1.6	4
236	COMMENTARY. <scp>surface roughness of nanofill and nanohybrid resin composites after polishing and brushing</scp> . Journal of Esthetic and Restorative Dentistry, 2007, 19, 274-275.	1.8	4
237	Biomaterials for Oral Health. Dental Clinics of North America, 2017, 61, xi-xii.	0.8	4
238	Baseline characteristics as 3-year predictors of tooth fracture and crack progression. Journal of the American Dental Association, 2021, 152, 146-156.	0.7	4
239	Effect of Novel Bioactive Glass-Containing Dentin Adhesive on the Permeability of Demineralized Dentin. Materials, 2021, 14, 5423.	1.3	4
240	Compositions of Surface Layers Formed on Amalgams in Air, Water, and Saline. Dental Materials Journal, 1993, 12, 118-126,272.	0.8	4
241	Outcomes of treatment and monitoring of posterior teeth with cracks: three-year results from the National Dental Practice-Based Research Network. Clinical Oral Investigations, 2022, 26, 2453-2463.	1.4	4
242	Effect of free mercury on the strengths of dental amalgams. Dental Materials, 1985, 1, 180-184.	1.6	3
243	Evaluation of the Amalgamation Reaction of Experimental Ag-Sn-Cu Alloys Containing Pd Using a Mercury Plating Technique. Dental Materials Journal, 2003, 22, 280-291.	0.8	3
244	Use of caries prevention services in the Northwest PRECEDENT dental network. Community Dentistry and Oral Epidemiology, 2011, 39, 69-78.	0.9	3
245	Shockwave application enhances the effect of dentin desensitizer. Dental Materials, 2021, 37, 113-119.	1.6	3
246	Effect of ethyl cellulose coating as an evaluation agent against contamination on the bond strength of zirconia restorations: An inAvitro study. Journal of Prosthetic Dentistry, 2022, 127, 766.e1-766.e9.	1.1	3
247	Onset and resolution of pain among treated and untreated posterior teeth with a visible crack: Three-year findings from the national dental practice-based research network. Journal of Dentistry, 2022, 119, 104078.	1.7	3
248	Effects of fat admixture on the strengths of conventional and low-viscosity bone cements. Journal of Orthopaedic Research, 1983, 1, 450-453.	1.2	2
249	Risk Management: Then and Now/Using Posterior Composites Appropriately. Journal of the American Dental Association, 1992, 123, 47-56.	0.7	2
250	Theoretical models of mercury dissolution from dental amalgams in neutral and acidic flows. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2001, 32, 409-416.	1.0	2
251	Quantum yield of conversion of the dental photoinitiator camphorquinone. , 2005, 5771, 256.		2
252	A dynamic Monte Carlo model for predicting radiant exposure distribution in dental composites: model development and verifications. , 2005, 5687, 90.		2

#	Article	IF	CITATIONS
253	Comparing Commercial and Private Client Dependency Upon Relationships with Lawyers. Services Marketing Quarterly, 2006, 27, 1-26.	0.7	2
254	Effect of experimental resin cements containing thio-urethane oligomers on the durability of ceramic-composite bonded interfaces. Biomaterial Investigations in Dentistry, 2019, 6, 81-89.	3.0	2
255	Antimicrobial potential of resin matrices loaded with coffee compounds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 428-435.	1.6	2
256	Clinical Performance of CAD/CAM Monolithic Lithium Disilicate Implantâ€5upported Single Crowns Using Solid or Predrilled Blocks in a Fully Digital Workflow: A Retrospective Cohort Study With Up To 33 Months of Follow Up. Journal of Prosthodontics, 2022, 31, 38-44.	1.7	2
257	Effect of side-group methylation on the performance of methacrylamides and methacrylates for dentin hybridization. Dental Materials, 2021, 37, 805-815.	1.6	2
258	Changes of residual stresses on the surface of leucite-reinforced ceramic restoration luted with resin composite cements during aging in water. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104711.	1.5	2
259	Mercury Evaporation from Amalgams with Varied Mercury Contents Dental Materials Journal, 2000, 19, 211-220.	0.8	2
260	Effect of biofilm exposure on marginal integrity of composite restorations. American Journal of Dentistry, 2020, 33, 201-205.	0.1	2
261	Strengthening ceramic surfaces with the use of resin cements based on thiourethane oligomers. Journal of Applied Polymer Science, 2020, 137, 49040.	1.3	1
262	Endovascular Venous Stenosis and Thrombosis Large Animal Model: Angiographic, Histological, and Biomechanical Characterizations. Journal of Vascular and Interventional Radiology, 2022, 33, 255-261.e2.	0.2	1
263	Caveat emptor when purchasing dental products online. Journal of the American Dental Association, 2022, 153, 196-199.	0.7	1
264	Dental materials continues a tradition of quality. Dental Materials, 1993, 9, 288.	1.6	0
265	SURFACE ROUGHNESS OF PACKABLE COMPOSITE RESINS POLISHED WITH VARIOUS SYSTEMS. Journal of Esthetic and Restorative Dentistry, 2004, 16, 48-48.	1.8	0
266	In Appreciation of Our Reviewers. Journal of Prosthodontics, 2005, 14, 219-220.	1.7	0
267	COMMENTARY. <scp>power distribution across the face of different light guides and its effect on composite surface microhardness</scp> . Journal of Esthetic and Restorative Dentistry, 2008, 20, 118-118.	1.8	0
268	WHITE-SPOT LESIONS: Authors' response. Journal of the American Dental Association, 2013, 144, 1334.	0.7	0
269	Mentoring and Role Modeling. Journal of Dental Research, 2016, 95, 845-845.	2.5	0
270	Leadership in dental biomaterials research. Journal of Dentistry, 2019, 87, 13-15.	1.7	0

16

#	Article	IF	CITATIONS
271	Author's response. Journal of the American Dental Association, 2020, 151, 811-812.	0.7	0
272	The Organic Matrix of Restorative Composites and Adhesives. , 2020, , 139-152.		0
273	Authors' response. Journal of the American Dental Association, 2021, 152, 424.	0.7	0
274	Considerations for Designing Next-Generation Composite Dental Materials. , 2021, , 99-114.		0
275	Impact of Postthrombotic Vein Wall Biomechanics on Luminal Flow during Venous Angioplasty and Stent Placement: Computational Modeling Results. Journal of Vascular and Interventional Radiology, 2022, 33, 262-267.	0.2	0