Wei Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5511665/publications.pdf

Version: 2024-02-01

105	4,230	34	63
papers	citations	h-index	g-index
105	105	105	4660 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Polarization-independent photon up-conversion with a single lithium niobate waveguide. Optics Express, 2022, 30, 2817.	3.4	4
2	Interaction between light and single quantum-emitter in open Fabry-Perot microcavity. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 060201.	0.5	0
3	Twin-nanofiber structure for a highly efficient single-photon collection. Optics Express, 2022, 30, 9147.	3.4	4
4	Optical Microfibers for Sensing Proximity and Contact in Human–Machine Interfaces. ACS Applied Materials & Description (1988) amp; Interfaces, 2022, 14, 14447-14454.	8.0	16
5	Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser. Advanced Photonics, 2022, 4, .	11.8	38
6	Epitaxial Integration of Multiple CdSe Quantum Dots in a Colloidal CdS Nanoplatelet. Journal of the American Chemical Society, 2022, 144, 8444-8448.	13.7	8
7	A true color palette: binary metastable photonic pigments. Nanoscale Horizons, 2022, 7, 890-898.	8.0	6
8	Strong mode coupling-enabled hybrid photon-plasmon laser with a microfiber-coupled nanorod. Science Advances, 2022, 8, .	10.3	9
9	Plasmon-driven nanowire actuators for on-chip manipulation. Nature Communications, 2021, 12, 385.	12.8	28
10	Advancing integrated photonics and microreactor technologies with ultrafast laser processing. , 2021, , .		2
11	Experimental Demonstration of a Compact Variable Single-Mode Fiber Coupler Based on Microfiber. IEEE Photonics Technology Letters, 2021, 33, 687-690.	2.5	6
12	Observation of photon antibunching with only one standard single-photon detector. Review of Scientific Instruments, 2021, 92, 013105.	1.3	1
13	Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 10 ⁸ . New Journal of Physics, 2021, 23, 123027.	2.9	39
14	Strong nonlinear optics in on-chip coupled lithium niobate microdisk photonic molecules. New Journal of Physics, 2020, 22, 073030.	2.9	20
15	Single-Nanowire Thermo-Optic Modulator Based on a Varshni Shift. ACS Photonics, 2020, 7, 2571-2577.	6.6	10
16	Ultra-Long Subwavelength Micro/Nanofibers With Low Loss. IEEE Photonics Technology Letters, 2020, 32, 1069-1072.	2.5	11
17	Miniature Optical Correlator in a Single-Nanowire Sagnac Loop. ACS Photonics, 2020, 7, 3264-3269.	6.6	6
18	Deciphering exciton-generation processes in quantum-dot electroluminescence. Nature Communications, 2020, 11, 2309.	12.8	96

#	Article	lF	Citations
19	Ultrahigh-Precision Diameter Control of Nanofiber Using Direct Mode Cutoff Feedback. IEEE Photonics Technology Letters, 2020, 32, 219-222.	2.5	14
20	Measuring the refractive index of optical adhesives at cryogenic temperatures. Applied Optics, 2020, 59, 1841.	1.8	2
21	Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber. Optics Express, 2020, 28, 12416.	3.4	32
22	Optimizing up-conversion single-photon detectors for quantum key distribution. Optics Express, 2020, 28, 25123.	3.4	13
23	Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electronic Advances, 2020, 3, 19002201-19002207.	13.3	89
24	Fabrication methods and high-precision diameter control techniques of optical micro-/nanofibers. Scientia Sinica: Physica, Mechanica Et Astronomica, 2020, 50, 084212.	0.4	2
25	Fast Lasing Wavelength Tuning in Single Nanowires. Advanced Optical Materials, 2019, 7, 1900797.	7.3	6
26	Electrically driven single-photon sources. Journal of Semiconductors, 2019, 40, 071904.	3.7	5
27	A simple approach to fiber-based tunable microcavity with high coupling efficiency. Applied Physics Letters, 2019, 114, .	3.3	18
28	Enhancement of the Monolayer Tungsten Disulfide Exciton Photoluminescence with a Two-Dimensional Material/Air/Gallium Phosphide In-Plane Microcavity. ACS Nano, 2019, 13, 5259-5267.	14.6	21
29	Broadband Quasi-Phase-Matched Harmonic Generation in an On-Chip Monocrystalline Lithium Niobate Microdisk Resonator. Physical Review Letters, 2019, 122, 173903.	7.8	141
30	A new route for fabricating polymer optical microcavities. Nanoscale, 2019, 11, 5203-5208.	5.6	17
31	Enhancing monolayer photoluminescence on optical micro/nanofibers for low-threshold lasing. Science Advances, 2019, 5, eaax7398.	10.3	36
32	Self-phase modulation in single CdTe nanowires. Optics Express, 2019, 27, 31800.	3.4	3
33	Ultra-broadband microfiber-coupled superconducting single-photon detector. Optics Express, 2019, 27, 25241.	3.4	7
34	Enhancement of Two-Photon Fluorescence and Low Threshold Amplification of Spontaneous Emission of Zn-processed CulnS2 Quantum Dots. ACS Photonics, 2018, 5, 1310-1317.	6.6	11
35	Highâ€Performance, Solutionâ€Processed, and Insulatingâ€Layerâ€Free Lightâ€Emitting Diodes Based on Colloidal Quantum Dots. Advanced Materials, 2018, 30, e1801387.	21.0	151
36	Lithium niobate micro-disk resonators of quality factors above 10 ⁷ . Optics Letters, 2018, 43, 4116.	3.3	140

#	Article	IF	Citations
37	Fabrication of high-Q microresonators in dielectric materials using a femtosecond laser: Principle and applications. Optics Communications, 2017, 395, 249-260.	2.1	20
38	Toward On-Chip Unidirectional and Single-Mode Polymer Microlaser. Journal of Lightwave Technology, 2017, 35, 2331-2336.	4.6	9
39	Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nature Communications, 2017, 8, 1132.	12.8	105
40	Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering. Light: Science and Applications, 2017, 6, e17061-e17061.	16.6	112
41	Monolithic integration of a lithium niobate microresonator with a free-standing waveguide using femtosecond laser assisted ion beam writing. Scientific Reports, 2017, 7, 45610.	3.3	24
42	Microfiber coupled superconducting nanowire single-photon detectors. Optics Communications, 2017, 405, 48-52.	2.1	3
43	Light-induced reversible expansion of individual gold nanoplates. AIP Advances, 2017, 7, .	1.3	3
44	Optofluidic refractive index sensor based on partial reflection. Photonic Sensors, 2017, 7, 97-104.	5.0	3
45	Fabrication of high quality factor lithium niobate double-disk using a femtosecond laser. International Journal of Optomechatronics, 2017, 11, 47-54.	6.6	11
46	On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes. Optics Express, 2017, 25, 124.	3.4	44
47	Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision. Optics Express, 2017, 25, 10434.	3.4	57
48	Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths. Optics Express, 2017, 25, 31221.	3.4	10
49	Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators. Photonics Research, 2017, 5, B29.	7.0	34
50	Integrated lithium niobate microresonators with in-plane microelectrodes for electro-optic tuning. , 2017, , .		1
51	Charging and Discharging Channels in Photoluminescence Intermittency of Single Colloidal CdSe/CdS Core/Shell Quantum Dot. Journal of Physical Chemistry Letters, 2016, 7, 5176-5182.	4.6	31
52	Spectra of spontaneous Raman scattering in taper-drawn micro/nano-fibers. Chinese Physics B, 2016, 25, 124205.	1.4	0
53	NbN superconducting nanowire single-photon detector fabricated on MgF ₂ substrate. Superconductor Science and Technology, 2016, 29, 065011.	3.5	5
54	Localized high-Q modes in conical microcavities. Optics Communications, 2016, 381, 169-173.	2.1	3

#	ARTICLE	IF	Citations
55	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">L<mml:mi mathvariant="normal">i<mml:mi>NbO</mml:mi></mml:mi </mml:mi </mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow>	3.8	80
56	Physical Review Applied, 2016, 6, . Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector. Optics Express, 2016, 24, 134.	3.4	110
57	Efficient second harmonic generation in an on-chip high-Q crystalline microresonator fabricated by femtosecond laser., 2016,,.		1
58	Femtoliter-scale optical nanofiber sensors. Optics Express, 2015, 23, 28408.	3.4	22
59	Femtosecond laser direct writing of high-Q microresonators in glass and crystals. Proceedings of SPIE, 2015, , .	0.8	2
60	Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Scientific Reports, 2015, 5, 8072.	3.3	172
61	Ultra-Sensitive Nanofiber Fluorescence Detection in a Microfluidic Chip. Sensors, 2015, 15, 4890-4898.	3.8	39
62	In situ fabrication of a tunable microlens. Optics Letters, 2015, 40, 3850.	3.3	4
63	Single-Band 2-nm-Line-Width Plasmon Resonance in a Strongly Coupled Au Nanorod. Nano Letters, 2015, 15, 7581-7586.	9.1	61
64	Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	48
65	Controllable synthesis and growth mechanism of dual size distributed PbSe quantum dots. RSC Advances, 2015, 5, 1961-1967.	3.6	4
66	Unidirectional Lasing From a Spiral-Shaped Microcavity of Dye-Doped Polymers. IEEE Photonics Technology Letters, 2015, 27, 311-314.	2.5	21
67	Fabrication of optical cavities with femtosecond laser pulses. Proceedings of SPIE, 2014, , .	0.8	0
68	High-sensitivity microfiber strain and force sensors. Optics Communications, 2014, 314, 28-30.	2.1	34
69	Single Nanowire Optical Correlator. Nano Letters, 2014, 14, 3487-3490.	9.1	61
70	Ultrafast All-Optical Graphene Modulator. Nano Letters, 2014, 14, 955-959.	9.1	610
71	Single-Dot Spectroscopy of Zinc-Blende CdSe/CdS Core/Shell Nanocrystals: Nonblinking and Correlation with Ensemble Measurements. Journal of the American Chemical Society, 2014, 136, 179-187.	13.7	141
72	Fabrication of three-dimensional microdisk resonators in calcium fluoride by femtosecond laser micromachining. Applied Physics A: Materials Science and Processing, 2014, 116, 2019-2023.	2.3	19

#	Article	IF	Citations
73	Spectra of Raman Scattering in Micro/nano-fibers. , 2014, , .		O
74	Nanoimprinted Polymer Micro/Nanofiber Bragg Gratings for High-Sensitivity Strain Sensing. IEEE Photonics Technology Letters, 2013, 25, 22-24.	2.5	31
75	Generation of correlated photon pairs in micro/nano-fibers. Optics Letters, 2013, 38, 5063.	3.3	35
76	Multicolour laser from a single bandgap-graded CdSSe alloy nanoribbon. Optics Express, 2013, 21, 22314.	3.4	32
77	Low-threshold whispering-gallery-mode microlasers fabricated in a Nd:glass substrate by three-dimensional femtosecond laser micromachining. Optics Letters, 2013, 38, 1458.	3.3	47
78	Low-threshold supercontinuum generation in semiconductor nanoribbons by continuous-wave pumping. Optics Express, 2012, 20, 8667.	3.4	20
79	On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing. Optics Express, 2012, 20, 10212.	3.4	60
80	Large defect-induced sub-bandgap photoresponse in semiconductor nanowires via waveguiding excitation. Nanotechnology, $2011, 22, 425201$.	2.6	13
81	Wavelength-scale deformed microdisk lasers. Physical Review A, 2011, 84, .	2.5	24
82	Longitudinal Lorentz force on a subwavelength-diameter optical fiber. Physical Review A, 2011, 83, .	2.5	11
83	Broad spectral response in composition-graded CdSSe single nanowires via waveguiding excitation. Applied Physics Letters, $2011, 99, .$	3.3	13
84	Tuning quantum dot states with optical fields. , 2010, , .		0
85	Directional Laser Emission from a Wavelength-Scale Chaotic Microcavity. Physical Review Letters, 2010, 105, 103902.	7.8	119
86	Subwavelength focusing of light by a tapered microtube. Applied Physics Letters, 2010, 97, 041114.	3.3	14
87	4Â ⁻ -quasi-phase-matched interactions in GaAs microdisk cavities. Optics Letters, 2009, 34, 3580.	3.3	28
88	Endface reflectivities of optical nanowires. Optics Express, 2009, 17, 10881.	3.4	44
89	Chaotic microcavity laser with high quality factor and unidirectional output. Physical Review A, 2009, 80, .	2.5	89
90	Creating Polarization-Entangled Photon Pairs from a Semiconductor Quantum Dot Using the Optical Stark Effect. Physical Review Letters, 2009, 103, 217402.	7.8	155

#	Article	IF	CITATIONS
91	Emission Spectrum of a Dressed Exciton-Biexciton Complex in a Semiconductor Quantum Dot. Physical Review Letters, 2008, 101, 027401.	7.8	74
92	Wave interference effect on polymer microstadium laser. Applied Physics Letters, 2007, 91, .	3.3	19
93	Control of lasing in fully chaotic open microcavities by tailoring the shape factor. Applied Physics Letters, 2007, 90, 081108.	3.3	51
94	Influence of a Single Quantum Dot State on the Characteristics of a Microdisk Laser. Physical Review Letters, 2007, 98, 117401.	7.8	76
95	Laser resonators formed by two nanoparticles. , 2006, , .		0
96	Random lasing in weakly scattering systems. Physical Review A, 2006, 74, .	2.5	137
97	Chaotic Microcavity Lasers., 2006,,.		0
98	Analysis of high-quality modes in open chaotic microcavities. Physical Review A, 2005, 72, .	2.5	52
99	Dynamical localization in microdisk lasers. Optics Express, 2005, 13, 5641.	3.4	16
100	Chaotic microlasers based on dynamical localization. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10498-10500.	7.1	36
101	Optically pumped ultraviolet microdisk laser on a silicon substrate. Applied Physics Letters, 2004, 84, 2488-2490.	3.3	58
102	Detection of chemical species using ultraviolet microdisk lasers. Applied Physics Letters, 2004, 85, 3666-3668.	3.3	50
103	Large spontaneous emission enhancement in InAs quantum dots coupled to microdisk whispering gallery modes. Physica Status Solidi (B): Basic Research, 2003, 238, 309-312.	1.5	6
104	Anisotropic radiation pattern from InGaAlP quantum well mesa-like microdisks. Solid State Communications, 2000, 116, 201-206.	1.9	0
105	InGaAlP quantum well microcavities of circular or deformed disks and disks with microstructures. , 1999, , .		4