List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5511665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrafast All-Optical Graphene Modulator. Nano Letters, 2014, 14, 955-959.	9.1	610
2	Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Scientific Reports, 2015, 5, 8072.	3.3	172
3	Creating Polarization-Entangled Photon Pairs from a Semiconductor Quantum Dot Using the Optical Stark Effect. Physical Review Letters, 2009, 103, 217402.	7.8	155
4	Highâ€Performance, Solutionâ€Processed, and Insulating‣ayerâ€Free Lightâ€Emitting Diodes Based on Colloidal Quantum Dots. Advanced Materials, 2018, 30, e1801387.	21.0	151
5	Single-Dot Spectroscopy of Zinc-Blende CdSe/CdS Core/Shell Nanocrystals: Nonblinking and Correlation with Ensemble Measurements. Journal of the American Chemical Society, 2014, 136, 179-187.	13.7	141
6	Broadband Quasi-Phase-Matched Harmonic Generation in an On-Chip Monocrystalline Lithium Niobate Microdisk Resonator. Physical Review Letters, 2019, 122, 173903.	7.8	141
7	Lithium niobate micro-disk resonators of quality factors above 10 ⁷ . Optics Letters, 2018, 43, 4116.	3.3	140
8	Random lasing in weakly scattering systems. Physical Review A, 2006, 74, .	2.5	137
9	Directional Laser Emission from a Wavelength-Scale Chaotic Microcavity. Physical Review Letters, 2010, 105, 103902.	7.8	119
10	Single whispering-gallery mode lasing in polymer bottle microresonators via spatial pump engineering. Light: Science and Applications, 2017, 6, e17061-e17061.	16.6	112
11	Graphene/h-BN/GaAs sandwich diode as solar cell and photodetector. Optics Express, 2016, 24, 134.	3.4	110
12	Electrically-driven single-photon sources based on colloidal quantum dots with near-optimal antibunching at room temperature. Nature Communications, 2017, 8, 1132.	12.8	105
13	Deciphering exciton-generation processes in quantum-dot electroluminescence. Nature Communications, 2020, 11, 2309.	12.8	96
14	Chaotic microcavity laser with high quality factor and unidirectional output. Physical Review A, 2009, 80, .	2.5	89
15	Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electronic Advances, 2020, 3, 19002201-19002207. Phase Matched Second-Harmonic Congration in an On-Chine mml:math	13.3	89
16	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">L<mml:mi mathvariant="normal">L<mml:mi></mml:mi></mml:mi </mml:mi </mml:mrow></mml:msub></mml:mrow>	3.8	80
17	Physical Review Applied, 2016, 6, . Influence of a Single Quantum Dot State on the Characteristics of a Microdisk Laser. Physical Review Letters, 2007, 98, 117401.	7.8	76
18	Emission Spectrum of a Dressed Exciton-Biexciton Complex in a Semiconductor Quantum Dot. Physical Review Letters, 2008, 101, 027401.	7.8	74

#	Article	IF	CITATIONS
19	Single Nanowire Optical Correlator. Nano Letters, 2014, 14, 3487-3490.	9.1	61
20	Single-Band 2-nm-Line-Width Plasmon Resonance in a Strongly Coupled Au Nanorod. Nano Letters, 2015, 15, 7581-7586.	9.1	61
21	On-chip three-dimensional high-Q microcavities fabricated by femtosecond laser direct writing. Optics Express, 2012, 20, 10212.	3.4	60
22	Optically pumped ultraviolet microdisk laser on a silicon substrate. Applied Physics Letters, 2004, 84, 2488-2490.	3.3	58
23	Real-time control of micro/nanofiber waist diameter with ultrahigh accuracy and precision. Optics Express, 2017, 25, 10434.	3.4	57
24	Analysis of high-quality modes in open chaotic microcavities. Physical Review A, 2005, 72, .	2.5	52
25	Control of lasing in fully chaotic open microcavities by tailoring the shape factor. Applied Physics Letters, 2007, 90, 081108.	3.3	51
26	Detection of chemical species using ultraviolet microdisk lasers. Applied Physics Letters, 2004, 85, 3666-3668.	3.3	50
27	Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1.	5.1	48
28	Low-threshold whispering-gallery-mode microlasers fabricated in a Nd:glass substrate by three-dimensional femtosecond laser micromachining. Optics Letters, 2013, 38, 1458.	3.3	47
29	Endface reflectivities of optical nanowires. Optics Express, 2009, 17, 10881.	3.4	44
30	On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes. Optics Express, 2017, 25, 124.	3.4	44
31	Ultra-Sensitive Nanofiber Fluorescence Detection in a Microfluidic Chip. Sensors, 2015, 15, 4890-4898.	3.8	39
32	Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 10 ⁸ . New Journal of Physics, 2021, 23, 123027.	2.9	39
33	Electro-optic tuning of a single-frequency ultranarrow linewidth microdisk laser. Advanced Photonics, 2022, 4, .	11.8	38
34	Chaotic microlasers based on dynamical localization. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10498-10500.	7.1	36
35	Enhancing monolayer photoluminescence on optical micro/nanofibers for low-threshold lasing. Science Advances, 2019, 5, eaax7398.	10.3	36
36	Generation of correlated photon pairs in micro/nano-fibers. Optics Letters, 2013, 38, 5063.	3.3	35

#	Article	IF	CITATIONS
37	High-sensitivity microfiber strain and force sensors. Optics Communications, 2014, 314, 28-30.	2.1	34
38	Single-mode lasing via loss engineering in fiber-taper-coupled polymer bottle microresonators. Photonics Research, 2017, 5, B29.	7.0	34
39	Multicolour laser from a single bandgap-graded CdSSe alloy nanoribbon. Optics Express, 2013, 21, 22314.	3.4	32
40	Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber. Optics Express, 2020, 28, 12416.	3.4	32
41	Nanoimprinted Polymer Micro/Nanofiber Bragg Gratings for High-Sensitivity Strain Sensing. IEEE Photonics Technology Letters, 2013, 25, 22-24.	2.5	31
42	Charging and Discharging Channels in Photoluminescence Intermittency of Single Colloidal CdSe/CdS Core/Shell Quantum Dot. Journal of Physical Chemistry Letters, 2016, 7, 5176-5182.	4.6	31
43	4Â ⁻ -quasi-phase-matched interactions in GaAs microdisk cavities. Optics Letters, 2009, 34, 3580.	3.3	28
44	Plasmon-driven nanowire actuators for on-chip manipulation. Nature Communications, 2021, 12, 385.	12.8	28
45	Wavelength-scale deformed microdisk lasers. Physical Review A, 2011, 84, .	2.5	24
46	Monolithic integration of a lithium niobate microresonator with a free-standing waveguide using femtosecond laser assisted ion beam writing. Scientific Reports, 2017, 7, 45610.	3.3	24
47	Femtoliter-scale optical nanofiber sensors. Optics Express, 2015, 23, 28408.	3.4	22
48	Unidirectional Lasing From a Spiral-Shaped Microcavity of Dye-Doped Polymers. IEEE Photonics Technology Letters, 2015, 27, 311-314.	2.5	21
49	Enhancement of the Monolayer Tungsten Disulfide Exciton Photoluminescence with a Two-Dimensional Material/Air/Gallium Phosphide In-Plane Microcavity. ACS Nano, 2019, 13, 5259-5267.	14.6	21
50	Low-threshold supercontinuum generation in semiconductor nanoribbons by continuous-wave pumping. Optics Express, 2012, 20, 8667.	3.4	20
51	Fabrication of high-Q microresonators in dielectric materials using a femtosecond laser: Principle and applications. Optics Communications, 2017, 395, 249-260.	2.1	20
52	Strong nonlinear optics in on-chip coupled lithium niobate microdisk photonic molecules. New Journal of Physics, 2020, 22, 073030.	2.9	20
53	Wave interference effect on polymer microstadium laser. Applied Physics Letters, 2007, 91, .	3.3	19
54	Fabrication of three-dimensional microdisk resonators in calcium fluoride by femtosecond laser micromachining. Applied Physics A: Materials Science and Processing, 2014, 116, 2019-2023.	2.3	19

#	Article	IF	CITATIONS
55	A simple approach to fiber-based tunable microcavity with high coupling efficiency. Applied Physics Letters, 2019, 114, .	3.3	18
56	A new route for fabricating polymer optical microcavities. Nanoscale, 2019, 11, 5203-5208.	5.6	17
57	Dynamical localization in microdisk lasers. Optics Express, 2005, 13, 5641.	3.4	16
58	Optical Microfibers for Sensing Proximity and Contact in Human–Machine Interfaces. ACS Applied Materials & Interfaces, 2022, 14, 14447-14454.	8.0	16
59	Subwavelength focusing of light by a tapered microtube. Applied Physics Letters, 2010, 97, 041114.	3.3	14
60	Ultrahigh-Precision Diameter Control of Nanofiber Using Direct Mode Cutoff Feedback. IEEE Photonics Technology Letters, 2020, 32, 219-222.	2.5	14
61	Large defect-induced sub-bandgap photoresponse in semiconductor nanowires via waveguiding excitation. Nanotechnology, 2011, 22, 425201.	2.6	13
62	Broad spectral response in composition-graded CdSSe single nanowires via waveguiding excitation. Applied Physics Letters, 2011, 99, .	3.3	13
63	Optimizing up-conversion single-photon detectors for quantum key distribution. Optics Express, 2020, 28, 25123.	3.4	13
64	Longitudinal Lorentz force on a subwavelength-diameter optical fiber. Physical Review A, 2011, 83, .	2.5	11
65	Fabrication of high quality factor lithium niobate double-disk using a femtosecond laser. International Journal of Optomechatronics, 2017, 11, 47-54.	6.6	11
66	Enhancement of Two-Photon Fluorescence and Low Threshold Amplification of Spontaneous Emission of Zn-processed CuInS2 Quantum Dots. ACS Photonics, 2018, 5, 1310-1317.	6.6	11
67	Ultra-Long Subwavelength Micro/Nanofibers With Low Loss. IEEE Photonics Technology Letters, 2020, 32, 1069-1072.	2.5	11
68	Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths. Optics Express, 2017, 25, 31221.	3.4	10
69	Single-Nanowire Thermo-Optic Modulator Based on a Varshni Shift. ACS Photonics, 2020, 7, 2571-2577.	6.6	10
70	Toward On-Chip Unidirectional and Single-Mode Polymer Microlaser. Journal of Lightwave Technology, 2017, 35, 2331-2336.	4.6	9
71	Strong mode coupling-enabled hybrid photon-plasmon laser with a microfiber-coupled nanorod. Science Advances, 2022, 8, .	10.3	9
72	Epitaxial Integration of Multiple CdSe Quantum Dots in a Colloidal CdS Nanoplatelet. Journal of the American Chemical Society, 2022, 144, 8444-8448.	13.7	8

#	Article	IF	CITATIONS
73	Ultra-broadband microfiber-coupled superconducting single-photon detector. Optics Express, 2019, 27, 25241.	3.4	7
74	Large spontaneous emission enhancement in InAs quantum dots coupled to microdisk whispering gallery modes. Physica Status Solidi (B): Basic Research, 2003, 238, 309-312.	1.5	6
75	Fast Lasing Wavelength Tuning in Single Nanowires. Advanced Optical Materials, 2019, 7, 1900797.	7.3	6
76	Miniature Optical Correlator in a Single-Nanowire Sagnac Loop. ACS Photonics, 2020, 7, 3264-3269.	6.6	6
77	Experimental Demonstration of a Compact Variable Single-Mode Fiber Coupler Based on Microfiber. IEEE Photonics Technology Letters, 2021, 33, 687-690.	2.5	6
78	A true color palette: binary metastable photonic pigments. Nanoscale Horizons, 2022, 7, 890-898.	8.0	6
79	NbN superconducting nanowire single-photon detector fabricated on MgF ₂ substrate. Superconductor Science and Technology, 2016, 29, 065011.	3.5	5
80	Electrically driven single-photon sources. Journal of Semiconductors, 2019, 40, 071904.	3.7	5
81	InGaAlP quantum well microcavities of circular or deformed disks and disks with microstructures. , 1999, , .		4
82	In situ fabrication of a tunable microlens. Optics Letters, 2015, 40, 3850.	3.3	4
83	Controllable synthesis and growth mechanism of dual size distributed PbSe quantum dots. RSC Advances, 2015, 5, 1961-1967.	3.6	4
84	Polarization-independent photon up-conversion with a single lithium niobate waveguide. Optics Express, 2022, 30, 2817.	3.4	4
85	Twin-nanofiber structure for a highly efficient single-photon collection. Optics Express, 2022, 30, 9147.	3.4	4
86	Localized high-Q modes in conical microcavities. Optics Communications, 2016, 381, 169-173.	2.1	3
87	Microfiber coupled superconducting nanowire single-photon detectors. Optics Communications, 2017, 405, 48-52.	2.1	3
88	Light-induced reversible expansion of individual gold nanoplates. AIP Advances, 2017, 7, .	1.3	3
89	Optofluidic refractive index sensor based on partial reflection. Photonic Sensors, 2017, 7, 97-104.	5.0	3
90	Self-phase modulation in single CdTe nanowires. Optics Express, 2019, 27, 31800.	3.4	3

#	Article	IF	CITATIONS
91	Femtosecond laser direct writing of high-Q microresonators in glass and crystals. Proceedings of SPIE, 2015, , .	0.8	2
92	Advancing integrated photonics and microreactor technologies with ultrafast laser processing. , 2021, , .		2
93	Measuring the refractive index of optical adhesives at cryogenic temperatures. Applied Optics, 2020, 59, 1841.	1.8	2
94	Fabrication methods and high-precision diameter control techniques of optical micro-/nanofibers. Scientia Sinica: Physica, Mechanica Et Astronomica, 2020, 50, 084212.	0.4	2
95	Efficient second harmonic generation in an on-chip high-Q crystalline microresonator fabricated by femtosecond laser. , 2016, , .		1
96	Observation of photon antibunching with only one standard single-photon detector. Review of Scientific Instruments, 2021, 92, 013105.	1.3	1
97	Integrated lithium niobate microresonators with in-plane microelectrodes for electro-optic tuning. , 2017, , .		1
98	Anisotropic radiation pattern from InGaAlP quantum well mesa-like microdisks. Solid State Communications, 2000, 116, 201-206.	1.9	0
99	Laser resonators formed by two nanoparticles. , 2006, , .		0
100	Chaotic Microcavity Lasers. , 2006, , .		0
101	Tuning quantum dot states with optical fields. , 2010, , .		0
102	Fabrication of optical cavities with femtosecond laser pulses. Proceedings of SPIE, 2014, , .	0.8	0
103	Spectra of spontaneous Raman scattering in taper-drawn micro/nano-fibers. Chinese Physics B, 2016, 25, 124205.	1.4	0
104	Spectra of Raman Scattering in Micro/nano-fibers. , 2014, , .		0
105	Interaction between light and single quantum-emitter in open Fabry-Perot microcavity. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 060201.	0.5	0