Julio Elias Normey-Rico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5511485/publications.pdf

Version: 2024-02-01

236 papers 4,120 citations

33 h-index 57 g-index

238 all docs

238 docs citations

238 times ranked 2617 citing authors

#	Article	IF	CITATIONS
1	Sufficient Conditions for Convergent Recursive Extrapolation of qLPV Scheduling Parameters Along a Prediction Horizon. IEEE Transactions on Automatic Control, 2023, 68, 3182-3193.	5.7	3
2	A parametrized nonlinear predictive control strategy for relaxing COVID-19 social distancing measures in Brazil. ISA Transactions, 2022, 124, 197-214.	5.7	33
3	Optimal Control Approach for the COVID-19 Pandemic in Bahia and Santa Catarina, Brazil. Journal of Control, Automation and Electrical Systems, 2022, 33, 49-62.	2.0	6
4	Advanced control applied to a gas compression system of an offshore platform: From modeling to related system infrastructure. Journal of Petroleum Science and Engineering, 2022, 208, 109428.	4.2	4
5	Optimal operation of Concentrating Solar Collector fields using exergy-based hierarchical control. Energy, 2022, 239, 122462.	8.8	2
6	Simplified optical model, aiming strategy and partial defocusing strategy for solar Fresnel collectors. Renewable Energy, 2022, 188, 11-36.	8.9	2
7	Split-range control for improved operation of solar absorption cooling plants. Renewable Energy, 2022, 192, 361-372.	8.9	6
8	Control por matriz dinámica rápido utilizando optimización en lÃnea. RIAI - Revista Iberoamericana De Automatica E Informatica Industrial, 2022, 19, 330-342.	1.0	0
9	An inputâ€toâ€state stable model predictive control framework for Lipschitz nonlinear parameter varying systems. International Journal of Robust and Nonlinear Control, 2021, 31, 8239-8272.	3.7	4
10	Fault-tolerant energy management for an industrial microgrid: A compact optimization method. International Journal of Electrical Power and Energy Systems, 2021, 124, 106342.	5.5	18
11	A novel unified method for time-varying dead-time compensation. ISA Transactions, 2021, 108, 78-95.	5.7	6
12	Predictive ESO-based control with guaranteed stability for uncertain MIMO constrained systems. ISA Transactions, 2021, 112, 161-167.	5.7	5
13	NMPC Through qLPV Embedding: A Tutorial Review of Different Approaches. IFAC-PapersOnLine, 2021, 54, 302-307.	0.9	3
14	Robust Nonlinear Predictive Control through qLPV embedding and Zonotope Uncertainty Propagation. IFAC-PapersOnLine, 2021, 54, 33-38.	0.9	5
15	Optimal Control Applied to Oenological Management of Red Wine Fermentative Macerations. Fermentation, 2021, 7, 94.	3.0	2
16	Characterizing quality of experience for demand management in South Brazil. International Journal of Electrical Power and Energy Systems, 2021, 130, 106709.	5.5	2
17	A predictor for dead-time systems based on the Kalman Filter for improved disturbance rejection and robustness. Journal of Process Control, 2021, 105, 108-116.	3.3	8
18	A fast dissipative robust nonlinear model predictive control procedure via quasiâ€linear parameter varying embedding and parameter extrapolation. International Journal of Robust and Nonlinear Control, 2021, 31, 9619-9651.	3.7	5

#	Article	lF	Citations
19	The COVID-19 (SARS-CoV-2) uncertainty tripod in Brazil: Assessments on model-based predictions with large under-reporting. AEJ - Alexandria Engineering Journal, 2021, 60, 4363-4380.	6.4	15
20	Assessing demand compliance and reliability in the Philippine off-grid islands with Model Predictive Control microgrid coordination. Renewable Energy, 2021, 179, 1271-1290.	8.9	9
21	Fast algorithms for constrained generalised predictive control with onâ€ine optimisation. IET Control Theory and Applications, 2021, 15, 545-558.	2.1	3
22	A Sequential Quadratic Programming Approach for the Predictive Control of the COVID-19 Spread. IFAC-PapersOnLine, 2021, 54, 139-144.	0.9	1
23	Short-Sighted Robust LPV Model Predictive Control: Application to Semi-Active Suspension Systems. , 2021, , .		2
24	Controlling industrial dead-time systems: When to use a PID or an advanced controller. ISA Transactions, 2020, 99, 339-350.	5.7	40
25	LPV-MPC fault-tolerant energy management strategy for renewable microgrids. International Journal of Electrical Power and Energy Systems, 2020, 117, 105644.	5.5	30
26	Hierarchical control for the start-up procedure of solar thermal fields with direct storage. Control Engineering Practice, 2020, 95, 104254.	5.5	15
27	A Two-Layer EMS for Cooperative Sugarcane-based Microgrids. International Journal of Electrical Power and Energy Systems, 2020, 118, 105752.	5.5	4
28	Nonlinear temperature regulation of solar collectors with a fast adaptive polytopic LPV MPC formulation. Solar Energy, 2020, 209, 214-225.	6.1	16
29	Sub-optimal Linear Parameter Varying Model Predictive Control for Solar Collectors. , 2020, , .		3
30	Optimal control analysis and Practical NMPC applied to refrigeration systems. ISA Transactions, 2020, 107, 90-106.	5.7	4
31	An optimal predictive control strategy for COVID-19 (SARS-CoV-2) social distancing policies in Brazil. Annual Reviews in Control, 2020, 50, 417-431.	7.9	88
32	Economic Management Based on Hybrid MPC for Microgrids: A Brazilian Energy Market Solution. Energies, 2020, 13, 3508.	3.1	6
33	Fast Constrained Generalized Predictive Control with ADMM Embedded in an FPGA. IEEE Latin America Transactions, 2020, 18, 422-429.	1.6	5
34	Control of a grid assisted PV- <mml:math altimg="si122.svg" display="inline" id="d1e1441" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mtext>H</mml:mtext></mml:mrow><mml:mtext> production system: A comparative study between optimal control and hybrid MPC. Journal of Process</mml:mtext></mml:msub></mml:math>	tex 3 x2 <td>ımløntext></td>	ımløntext>
35	Control, 2020, 92, 220-233. Model predictive control design for linear parameter varying systems: A survey. Annual Reviews in Control, 2020, 49, 64-80.	7.9	88
36	A Modifier-Adaptation Approach to the One-Layer Economic MPC. IFAC-PapersOnLine, 2020, 53, 6957-6962.	0.9	2

#	Article	IF	Citations
37	A general optimal operating strategy for commercial membrane distillation facilities. Renewable Energy, 2020, 156, 220-234.	8.9	10
38	Subâ€optimal recursively feasible Linear Parameterâ€Varying predictive algorithm for semiâ€active suspension control. IET Control Theory and Applications, 2020, 14, 2764-2775.	2.1	14
39	CSPS: an interactive tool for control design and analysis of processes with industrial characteristics. IFAC-PapersOnLine, 2020, 53, 17362-17367.	0.9	O
40	Nonlinear Model Predictive Control applied to Concentrated Solar Power Plants. IFAC-PapersOnLine, 2020, 53, 12745-12750.	0.9	0
41	Optimal Control of a Grid Assisted Photovoltaic-Hydrogen Production System. IFAC-PapersOnLine, 2019, 52, 1012-1017.	0.9	1
42	Hybrid predictive controller for overheating prevention of solar collectors. Renewable Energy, 2019, 136, 535-547.	8.9	7
43	A Linear Parameter Varying Approach for Robust Dead-Time Compensation. IFAC-PapersOnLine, 2019, 52, 880-885.	0.9	4
44	Hybrid NMPC Applied to a Solar-powered Membrane Distillation System. IFAC-PapersOnLine, 2019, 52, 124-129.	0.9	6
45	LPV-Filtered Predictive Control Design for Fault-Tolerant Energy Management. IFAC-PapersOnLine, 2019, 52, 166-171.	0.9	2
46	Moving Horizon Estimation of Faults in Renewable Microgrids. IFAC-PapersOnLine, 2019, 52, 311-316.	0.9	7
47	Fast Generalized Predictive Control Based on Accelerated Dual Gradient Projection Method. IFAC-PapersOnLine, 2019, 52, 480-485.	0.9	5
48	MPC with Machine Learning Applied to Resource Allocation Problem using Lambda Architecture. IFAC-PapersOnLine, 2019, 52, 550-555.	0.9	3
49	Modelling the Ecological Effect of the Golden Mussel Invasion in Uruguay River. IFAC-PapersOnLine, 2019, 52, 721-726.	0.9	2
50	Model-based predictive control for the regulation of the golden mussel Limnoperna fortunei (Dunker, 1857). Ecological Modelling, 2019, 406, 84-97.	2.5	4
51	Robustness conditions of LPV fault estimation systems for renewable microgrids. International Journal of Electrical Power and Energy Systems, 2019, 111, 325-350.	5 . 5	9
52	Fast Constrained Generalized Predictive Control with ADMM Embedded in an FPGA. IEEE Latin America Transactions, 2019, 18, 422-429.	1.6	2
53	Novel qLPV MPC Design with Least-Squares Scheduling Prediction. IFAC-PapersOnLine, 2019, 52, 158-163.	0.9	28
54	A Convex Optimal Voltage Unbalance Compensator for Hybrid AC/DC Microgrids. , 2019, , .		3

#	Article	IF	CITATIONS
55	Dealing with Energy-Generation Faults to Improve the Resilience of Microgrids: A Survey. , 2019, , .		1
56	Mixed Logical Dynamical Nonlinear Model Predictive Controller for Largeâ€Scale Solar Fields. Asian Journal of Control, 2019, 21, 1881-1891.	3.0	7
57	Apparent delay analysis for a flat-plate solar field model designed for control purposes. Solar Energy, 2019, 177, 241-254. Fault Analysis, Detection and Estimation for a Microgrid via < mml:math	6.1	8
58	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si124.gif" overflow="scroll"> <mml:mrow><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mn altimg="si126.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:< td=""><td>0.0</td><td>.0</td></mml:<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mn></mml:mrow></mml:msub></mml:mrow>	0.0	.0
59	International Journal of Electrical Power and Energy Systems, 2019, 105, 823-845. Advanced chance-constrained predictive control for the efficient energy management of renewable power systems. Journal of Process Control, 2019, 74, 120-132.	3.3	/mm:mi>∢/m 42
60	Hybrid CSP-PV Advanced Control, Integration and Real-time Optimization: Review and Future Line of Research., 2019,,.		0
61	Thermo-Economic Evaluation of CSP Technologies for Their Application in Uruguay. , 2019, , .		О
62	A 2DOF Thermosolar Concentrator Proposal: Solar Tracking and Disturbance Rejection Using Proportional Defocus, 2019, , .		2
63	Determination of Gravity-Induced Deformation of Heliostat Structures Through Irradiance Maps Analyses. , 2019, , .		O
64	Automation and Renewable Energies: Outreach Efforts in Brazilian Public Schools., 2019,,.		0
65	A convex formulation for voltage unbalance compensation problem on hybrid microgrids. Revista Principia, 2019, 1, 111.	0.1	0
66	Efficient simulation strategy for PCM-based cold-energy storage systems. Applied Thermal Engineering, 2018, 139, 419-431.	6.0	13
67	Future Hybrid Local Energy Generation Paradigm for the Brazilian Sugarcane Industry Scenario. International Journal of Electrical Power and Energy Systems, 2018, 101, 139-150.	5.5	19
68	Kalman Filter Observers with Harmonic Disturbance Estimation Applied to a Grid-Connected LCL Filter * ., 2018, , .		1
69	Analysis of Anti-windup Techniques in PID Control of Processes with Measurement Noise ⎠âŽThis work was supported by the Brazilian National Council for Scientific and Technological Development (CNPq) under Grants 311024/2015-7 and 305785/2015-0 IFAC-PapersOnLine, 2018, 51, 948-953.	0.9	25
70	A robust predictor for dead-time systems based on the Kalman filter. IFAC-PapersOnLine, 2018, 51, 24-29.	0.9	2
71	LPV-Hâ^ž Fault Estimation for Boilers in Sugarcane Processing Plants. IFAC-PapersOnLine, 2018, 51, 1-6.	0.9	5
72	Robust Model Predictive Control: Implementation Issues with Comparative Analysis. IFAC-PapersOnLine, 2018, 51, 478-483.	0.9	8

#	Article	IF	CITATIONS
73	Optimization of Grid-Tied Microgrids Under Binomial Differentiated Tariff and Net Metering Policies: A Brazilian Case Study. Journal of Control, Automation and Electrical Systems, 2018, 29, 731-741.	2.0	8
74	Practical nonlinear model predictive control of a 5 MW wind turbine. , 2018, , .		2
75	A Method for Designing Decoupled Filtered Smith Predictor for Square MIMO Systems With Multiple Time Delays. IEEE Transactions on Industry Applications, 2018, 54, 6439-6449.	4.9	20
76	Modeling and simulation of a solar field based on flat-plate collectors. Solar Energy, 2018, 170, 369-378.	6.1	10
77	Optimal solar collectors defocusing based on maximum temperature., 2018,,.		1
78	Model predictive control for inventory management in biomass manufacturing supply chains. International Journal of Production Research, 2017, 55, 3596-3608.	7.5	10
79	A practical approach for hybrid distributed MPC. Journal of Process Control, 2017, 55, 30-41.	3.3	20
80	Predictive control for hydrogen production by electrolysis in an offshore platform using renewable energies. International Journal of Hydrogen Energy, 2017, 42, 12865-12876.	7.1	41
81	Evaluation of a Long Term System coupled with a Short Term System of a hydrogen-based microgrid. , 2017, , .		1
82	Event-Based GPC for Multivariable Processes: A Practical Approach With Sensor Deadband. IEEE Transactions on Control Systems Technology, 2017, 25, 1621-1633.	5.2	7
83	A unified anti-windup strategy for SISO discrete dead-time compensators. Control Engineering Practice, 2017, 69, 50-60.	5.5	17
84	Optimal operation of hybrid power systems including renewable sources in the sugar cane industry. IET Renewable Power Generation, 2017, 11, 1237-1245.	3.1	25
85	MPC Advanced Control of an Offshore Gas Compression System. , 2017, , .		O
86	Implementation and test of a new autotuning method for PID controllers of TITO processes. Control Engineering Practice, 2017, 58, 171-185.	5.5	20
87	Advanced Control for Energy Management of Grid-Connected Hybrid Power Systems in the Sugar Cane Industry * *The authors thank CNPq and Ministerio de EconomÃa y Competitividad de España for financing the projects CNPq401126/2014-5, CNPq303702/2011-7 and DPI2016-78338-R IFAC-PapersOnLine, 2017. 50. 31-36.	0.9	5
88	Distributed Energy Management System for V2G Networked Microgrids. , 2017, , .		7
89	The Comparison Study of Short-Term Prediction Methods to Enhance the Model Predictive Controller Applied to Microgrid Energy Management. Energies, 2017, 10, 884.	3.1	12
90	The use of Model Predictive Control (MPC) in the optimal distribution of electrical energy in a microgrid located in southeastern of Spain: A case study simulation. Renewable Energy and Power Quality Journal, 2017, 1, 221-226.	0.2	2

#	Article	IF	CITATIONS
91	Model predictive control of a tilt-rotor UAV for load transportation. , 2016, , .		16
92	Decoupling filtered Smith predictor design for multivariable systems with multiple time delays. , 2016, , .		3
93	Binary search algorithm for mixed integer optimization: Application to energy management in a microgrid. , 2016, , .		5
94	Multivariable Greenhouse Control Using the Filtered Smith Predictor. Journal of Control, Automation and Electrical Systems, 2016, 27, 349-358.	2.0	19
95	Low-order feedback-feedforward controller for dead-time processes with measurable disturbances. IFAC-PapersOnLine, 2016, 49, 591-596.	0.9	2
96	Energy management of an experimental microgrid coupled to a V2G system. Journal of Power Sources, 2016, 327, 702-713.	7.8	76
97	Simplified filtered Smith predictor for MIMO processes with multiple time delays. ISA Transactions, 2016, 65, 339-349.	5.7	23
98	Constrained latent variable model predictive control for trajectory tracking and economic optimization in batch processes. Journal of Process Control, 2016, 45, 1-11.	3.3	18
99	Multivariable GPC for processes with multiple time delays: Implementation issues. , 2016, , .		2
100	Robust delay compensation for MPC for systems with input nonlinearities and multiple dead times. , 2016, , .		1
101	Tuning methodology for industrial predictive controllers applied to Natural Gas Processing Unit. , 2016, , .		1
102	Mixed-Integer-Quadratic-Programming based Predictive Control for hydrogen production using renewable energy. , 2016, , .		0
103	On the filtered Smith predictor with feedforward compensation. Journal of Process Control, 2016, 41, 35-46.	3.3	29
104	Robust design methodology for simultaneous feedforward and feedback tuning. IET Control Theory and Applications, 2016, 10, 84-94.	2.1	12
105	Temperature control in a solar collector field using Filtered Dynamic Matrix Control. ISA Transactions, 2016, 62, 39-49.	5 . 7	33
106	Smith predictor with inverted decoupling for square multivariable time delay systems. International Journal of Systems Science, 2016, 47, 374-388.	5.5	17
107	Robustness of Nonlinear MPC for Dead-time Processes**This work was financed by CNPq-Brasil (Conselho Nacional de Desenvolvimento CientÃfico e Tecnológico) IFAC-PapersOnLine, 2015, 48, 332-341.	0.9	6
108	Distributed MPC for resourceâ€constrained control systems. Optimal Control Applications and Methods, 2015, 36, 272-291.	2.1	11

#	Article	IF	Citations
109	Filtered dynamic matrix control applied to a solar collector field. , 2015, , .		1
110	A robust predictor for nonlinear systems with dead time. , 2015, , .		0
111	Event-based GPC for multivariable processes. , 2015, , .		1
112	Economic energy management of a microgrid including electric vehicles. , 2015, , .		12
113	Robust nonlinear predictor for dead-time systems with input nonlinearities. Journal of Process Control, 2015, 27, 1-14.	3.3	12
114	Model predictive control of hydrogen production by renewable energy. , 2015, , .		8
115	Performance indexes for assistance in retuning multivariable model predictive controllers. , 2014, , .		O
116	Unified dead-time compensation structure for SISO processes with multiple dead times. ISA Transactions, 2014, 53, 1865-1872.	5.7	7
117	On the prediction error of dead-time compensation control for constrained nonlinear systems. , 2014,		5
118	Event-based predictive control of pH in tubular photobioreactors. Computers and Chemical Engineering, 2014, 65, 28-39.	3.8	44
119	On the filtered Smith predictor for MIMO processes with multiple time delays. Journal of Process Control, 2014, 24, 383-400.	3.3	43
120	Efficient building energy management using distributed model predictive control. Journal of Process Control, 2014, 24, 740-749.	3.3	75
121	Thermal comfort control using a non-linear MPC strategy: A real case of study in a bioclimatic building. Journal of Process Control, 2014, 24, 703-713.	3.3	76
122	An automatic tuning methodology for a unified dead-time compensator. Control Engineering Practice, 2014, 27, 11-22.	5.5	24
123	A Bilinear FSP-SPC in a solar desalination plant collector field. , 2014, , .		1
124	Using a MILP model for battery bank operation in the & amp; $\#x201C$; $White\ tariff\& amp; \#x201D$; Brazilian context., 2014,,.		5
125	Filtered Smith Predictor with nonlinear model applied to a solar field. , 2014, , .		2
126	Automation and energy optimization of a domestic solar heating unit. , 2014, , .		1

#	Article	IF	CITATIONS
127	Advanced Control Strategy Combined with Solar Cooling for Improving Ethanol Production in Fermentation Units. Industrial & Engineering Chemistry Research, 2014, 53, 11384-11392.	3.7	7
128	An Approach for Improving Student Performance in a Feedback Systems Course for Process Control Education. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 10574-10579.	0.4	2
129	Optimal feedforward compensators for integrating plants. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 170-175.	0.4	3
130	A filtered Smith predictor based subspace predictive controller. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 1011-1016.	0.4	0
131	Repetitive model based predictive controller to reject periodic disturbances IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 11494-11499.	0.4	4
132	Adaptive Dead Time Compensation on Congestion Control of TCP Networks: An Unified Solution. Journal of Control, Automation and Electrical Systems, 2013, 24, 439-449.	2.0	2
133	A combined FSP and reset control approach to improve the set-point tracking task of dead-time processes. Control Engineering Practice, 2013, 21, 351-359.	5.5	10
134	Optimizing building comfort temperature regulation via model predictive control. Energy and Buildings, 2013, 57, 361-372.	6.7	101
135	Deadâ€time compensation of constrained linear systems with bounded disturbances: output feedback case. IET Control Theory and Applications, 2013, 7, 52-59.	2.1	10
136	Viability and application of ethanol production coupled with solar cooling. Applied Energy, 2013, 102, 501-509.	10.1	12
137	Simple Tuning Rules for Dead-Time Compensation of Stable, Integrative, and Unstable First-Order Dead-Time Processes. Industrial & Engineering Chemistry Research, 2013, 52, 11646-11654.	3.7	53
138	Unified PID Tuning Approach for Stable, Integrative, and Unstable Dead-Time Processes. Industrial & Lamp; Engineering Chemistry Research, 2013, 52, 16811-16819.	3.7	16
139	Small scale UAV with birotor configuration. , 2013, , .		10
140	A multivariable nonlinear MPC control strategy for thermal comfort and indoor-air quality. , 2013, , .		12
141	A flexible low cost embedded system for Model Predictive Control of industrial processes. , 2013, , .		5
142	Distributed model predictive control for energy distribution. , 2013, , .		3
143	Unified approach for minimal output dead time compensation in MIMO non-square processes., 2012,,.		4
144	Unified PID Tuning Approach for Stable, Integrative and Unstable Dead-Time Processes. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 35-40.	0.4	11

#	Article	IF	CITATIONS
145	Design of PID Controller with Filter for Distributed Parameter Systems. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 495-500.	0.4	5
146	Disturbance Estimator based NonLinear MPC of a Three Phase Separator. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 101-106.	0.4	6
147	Improvements on the Filtered Smith Predictor using the Clegg Integrator. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 110-115.	0.4	3
148	A nonlinear model based predictive control strategy to maintain thermal comfort inside a bioclimatic building. , 2012, , .		8
149	Comments on "A novel dead time compensator for stable processes with long dead times―[Journal of Process Control 22 (2012) 612–625]. Journal of Process Control, 2012, 22, 1404-1407.	3. 3	1
150	Robust stability analysis of filtered Smith predictor for time-varying delay processes. Journal of Process Control, 2012, 22, 1975-1984.	3.3	34
151	A practical approach for Generalized Predictive Control within an event-based framework. Computers and Chemical Engineering, 2012, 41, 52-66.	3.8	22
152	On the explicit dead-time compensation for robust model predictive control. Journal of Process Control, 2012, 22, 236-246.	3.3	26
153	Improving feedforward disturbance compensation capabilities in Generalized Predictive Control. Journal of Process Control, 2012, 22, 527-539.	3.3	46
154	Modelling and Predictive Congestion Control of TCP Protocols. Lecture Notes in Control and Information Sciences, 2012, , 383-393.	1.0	2
155	Predictive Control with Disturbance Forecasting for Greenhouse Diurnal Temperature Control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 1779-1784.	0.4	21
156	Practical MPC with robust dead-time compensation applied to a solar desalination plant. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 4909-4914.	0.4	10
157	Modeling, Control and Optimization of Ethanol Fermentation Process. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 10609-10614.	0.4	5
158	Unified approach for minimal output dead time compensation in MIMO processes. Journal of Process Control, 2011, 21, 1080-1091.	3.3	39
159	Local model predictive controller in a solar desalination plant collector field. Renewable Energy, 2011, 36, 3001-3012.	8.9	37
160	Filtered Smith predictor with feedback linearization and constraints handling applied to a solar collector field. Solar Energy, 2011, 85, 1056-1067.	6.1	18
161	Robust design of dead-time compensator controllers for constrained non-linear systems. , 2011, , .		5
162	A robust filter and controller design for NCS with uncertainties and data dropouts. , 2011, , .		0

#	Article	IF	CITATIONS
163	Filtered Smith predictor with feedback linearization and constraints handling applied to a solar collector field. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 152-157.	0.4	O
164	Explicit input-delay compensation for robustness improvement in MPC. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2010, 43, 384-389.	0.4	4
165	Dealing with noise in unstable dead-time process control. Journal of Process Control, 2010, 20, 840-847.	3.3	38
166	Modelling, identification and control of a calorimeter used for performance evaluation of refrigerant compressors. Control Engineering Practice, 2010, 18, 254-261.	5.5	19
167	Robust Nonlinear Predictive Control Applied to a Solar Collector Field in a Solar Desalination Plant. IEEE Transactions on Control Systems Technology, 2010, , .	5.2	18
168	Robust tube based model predictive control for constrained systems with dead-time. , 2010, , .		1
169	Smith Predictor-Based Control Schemes for Dead-Time Unstable Cascade Processes. Industrial & Engineering Chemistry Research, 2010, 49, 11471-11481.	3.7	29
170	Dealing with measurement noise in integrative dead-time processes. , 2009, , .		0
171	Integrated design & Dock boost converter. Controle and Automacao, 2009, 20, 427-438.	0.2	1
172	Approach for non-linear predictive control based on the local model ideas. Controle and Automacao, 2009, 20, 465-481.	0.2	2
173	Predictive temperature control of solar collectors in a desalination plant. , 2009, , .		2
174	Robust constrained predictive feedback linearization controller in a solar desalination plant collector field. Control Engineering Practice, 2009, 17, 1076-1088.	5.5	56
175	Unified approach for robust dead-time compensator design. Journal of Process Control, 2009, 19, 38-47.	3.3	210
176	An unified approach for DTC design using interactive tools. Control Engineering Practice, 2009, 17, 1234-1244.	5.5	33
177	A Predictive Controller for Autonomous Vehicle Path Tracking. IEEE Transactions on Intelligent Transportation Systems, 2009, 10, 92-102.	8.0	253
178	Control Predictivo en Cascada de un VehÃculo Autónomo. RIAI - Revista Iberoamericana De Automatica E Informatica Industrial, 2009, 6, 63-74.	1.0	3
179	An Interactive Tool to Design Controllers for Processes with Dead Time. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 189-194.	0.4	2
180	TCP modelling and predictive congestion control. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 72-77.	0.4	3

#	Article	IF	Citations
181	Robust Model Predictive Controller with Terminal Weighting for Multivariable Dead-Time Processes*. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 248-253.	0.4	1
182	Dead-time compensators: A survey. Control Engineering Practice, 2008, 16, 407-428.	5.5	220
183	Distributed continuous process simulation: An industrial case study. Computers and Chemical Engineering, 2008, 32, 1195-1205.	3.8	12
184	Robust Predictive Control Strategy Applied for Propofol Dosing Using BIS as a Controlled Variable During Anesthesia. IEEE Transactions on Biomedical Engineering, 2008, 55, 2161-2170.	4.2	198
185	Simple Robust Dead-Time Compensator for First-Order Plus Dead-Time Unstable Processes. Industrial & Lamp; Engineering Chemistry Research, 2008, 47, 4784-4790.	3.7	25
186	Control of Dead-Time Processes (J.E. Normey-Rico and E.F. Camacho; 2007) [Book Review]. IEEE Control Systems, 2008, 28, 136-137.	0.8	4
187	Distributed Object-based Architecture for Controlling Autonomous Vehicles. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 6903-6908.	0.4	O
188	PREDICTIVE CONTROL WITH ROBUST DEAD-TIME COMPENSATION: APPLICATION TO DRUG DOSING DURING ANESTHESIA. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 402-407.	0.4	2
189	MIXED INTEGER PREDICTIVE CONTROL OF A BUCK BOOST CONVERTER. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 408-413.	0.4	O
190	A PRACTICAL APPROACH TO PREDICTIVE CONTROL FOR NONLINEAR PROCESSES. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 210-215.	0.4	42
191	A METHODOLOGY FOR THE INTEGRATED CIRCUIT AND CONTROL DESIGN OF A BUCK BOOST CONVERTER. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2007, 40, 286-291.	0.4	O
192	Robust predictive control of drug dosing during anesthesia., 2007,,.		1
193	Grade change predictive control for paper industry. , 2007, , .		1
194	Integrated design and control applied to a buck boost converter., 2007,,.		6
195	Dead-time Compensator Volterra Predictive Controller of a Van de Vusse CSTR. , 2007, , .		O
196	INTRODUCING LINEAR MATRIX INEQUALITIES IN A CONTROL COURSE. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 205-210.	0.4	13
197	A PREDICTION APPROACH TO INTRODUCE DEAD-TIME PROCESS CONTROL IN A BASIC CONTROL COURSE. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 211-216.	0.4	1
198	EDUSCA (EDUCATIONAL SCADA): FEATURES AND APPLICATIONS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 614-619.	0.4	4

#	Article	IF	CITATIONS
199	SLIDING MODE PREDICTIVE CONTROL OF A DELAYED CSTR. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2006, 39, 246-251.	0.4	6
200	ROBUST CONSTRAINED HORIZON PREDICTIVE CONTROLLER FOR DEAD TIME SYSTEMS. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 290-295.	0.4	2
201	DISTRIBUTED CONTINUOUS PROCESS SIMULATION: AN INDUSTRIAL CASE STUDY. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 147-152.	0.4	1
202	ROBUST DEAD-TIME COMPENSATION OF A EVAPORATION PROCESS IN SUGAR PRODUCTION. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 460-465.	0.4	5
203	NONLINEAR MODEL BASED PREDICTIVE CONTROLLER OF A BUCK BOOST CONVERTER. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2005, 38, 193-198.	0.4	3
204	A Smith predictive based MPC in a solar air conditioning plant. Journal of Process Control, 2005, 15, 1-10.	3.3	47
205	2DOF discrete dead-time compensators for stable and integrative processes with dead-time. Journal of Process Control, 2005, 15, 341-352.	3.3	43
206	OPC based distributed real time simulation of complex continuous processes. Simulation Modelling Practice and Theory, 2005, 13, 525-549.	3.8	27
207	Comments on simple control method for integrating processes with long deadtime. Journal of Process Control, 2003, 13, 363-364.	3.3	1
208	ROBUSTNESS ANALYSIS OF DMC FOR FIRST ORDER PLUS DEAD-TIME PROCESSES. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2002, 35, 367-372.	0.4	0
209	A "CONCEPTS-ON―PROJECT ON UNDERGRADUATE CONTROL EDUCATION. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2002, 35, 287-292.	0.4	0
210	A unified approach to design dead-time compensators for stable and integrative processes with dead-time. IEEE Transactions on Automatic Control, 2002, 47, 299-305.	5.7	76
211	Control of integral processes with dead-time. Part 1: Disturbance observer-based 2DOF control scheme. IET Control Theory and Applications, 2002, 149, 285-290.	1.7	87
212	Mobile robot path tracking using a robust PID controller. Control Engineering Practice, 2001, 9, 1209-1214.	5.5	118
213	Multivariable generalised predictive controller based on the Smith predictor. IET Control Theory and Applications, 2000, 147, 538-546.	1.7	28
214	Robust PID Tuning. Application to a Mobile Robot Path Tracking Problem. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2000, 33, 559-564.	0.4	0
215	Robust design of GPC for processes with time delay. International Journal of Robust and Nonlinear Control, 2000, 10, 1105-1127.	3.7	12
216	Smith predictor and modifications: A comparative study. , 1999, , .		18

#	Article	IF	Citations
217	Stability of saturated dead-time compensating pi controllers for uncertain dead-time systems. , 1999, , .		4
218	A Smith-predictor-based generalised predictive controller for mobile robot path-tracking. Control Engineering Practice, 1999, 7, 729-740.	5.5	70
219	Robustness effects of a prefilter in Smith predictor–based generalised predictive controller. IET Control Theory and Applications, 1999, 146, 179-185.	1.7	29
220	Robust tuning of dead-time compensators for processes with an integrator and long dead-time. IEEE Transactions on Automatic Control, 1999, 44, 1597-1603.	5 . 7	66
221	Dead-Time Compensators: A Unified Approach. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1998, 31, 129-134.	0.4	12
222	A Robust Adaptive Dead-Time Compensator with Application to A Solar Collector Field 1. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1998, 31, 93-98.	0.4	33
223	A Smith Predictor Based Generalized Predictive Controller for Mobile Robot Path-Tracking. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1998, 31, 153-158.	0.4	O
224	Improving the robustness of generalized predictive controllers. Application to a heat exchanger. , 1997, , .		0
225	Improving the robustness of dead-time compensating PI controllers. Control Engineering Practice, 1997, 5, 801-810.	5.5	125
226	A Partial Non-interactive Multivariable Controller for a Voltage Feed Induction Motor. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1990, 23, 505-510.	0.4	0
227	A slip frequency gain adaptation method based on MRAS for induction motor drives. , 0, , .		4
228	Low time-consuming implementation of predictive path-tracking control for a "synchro-drive" mobile robot. , 0, , .		5
229	Disturbance observer-based control for processes with an integrator and long dead-time. , 0, , .		5
230	A Software Tool for Automatic Identification of Dynamic Models. Advanced Materials Research, 0, 875-877, 2254-2258.	0.3	0
231	Control de ph en fotobiorreactores utilizando un gpc basado en eventos. , 0, , .		O
232	UMA ESTRUTURA DE CONTROLE AVANÇADO PARA ADESTILARIA DE ETANOL. , 0, , .		О
233	A COMPARATIVE STUDY ON EMBEDDED MPC FOR INDUSTRIAL PROCESSES., 0, , .		O
234	ROBUST MIMO SMITH PREDICTOR TUNING VIA CONVEX OPTIMIZATION., 0, , .		O

#	Article	IF	CITATIONS
235	Stability analysis of a modified Smith predictor for integrative plants with dead-time uncertainties and saturations. , 0 , , .		o
236	2D balance control of a self-balancing robot for power inspection in urban networks. Revista Principia, 0, , .	0.1	0