Yuxiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5511292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Droplets impact on textured surfaces: Mesoscopic simulation of spreading dynamics. Applied Surface Science, 2015, 327, 159-167.	6.1	65
2	Droplet impact on cylindrical surfaces: Effects of surface wettability, initial impact velocity, and cylinder size. Journal of Colloid and Interface Science, 2020, 578, 207-217.	9.4	54
3	Numerical Study on Droplet Sliding across Micropillars. Langmuir, 2015, 31, 4673-4677.	3.5	37
4	Anisotropic Wetting of Droplets on Stripe-Patterned Chemically Heterogeneous Surfaces: Effect of Length Ratio and Deposition Position. Langmuir, 2019, 35, 4387-4396.	3.5	34
5	An easy-to-use boundary condition in dissipative particle dynamics system. Computers and Fluids, 2018, 166, 117-122.	2.5	25
6	Lateral motion of a droplet after impacting on groove-patterned superhydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570, 48-54.	4.7	21
7	Droplet Sliding: The Numerical Observation of Multiple Contact Angle Hysteresis. Langmuir, 2019, 35, 9970-9978.	3.5	20
8	Many-body dissipative particle dynamics simulation of the anisotropic effect of droplet wetting on stripe-patterned heterogeneous surfaces. Applied Surface Science, 2019, 494, 675-683.	6.1	19
9	Spontaneous uptake of droplets into non-wetting capillaries. Computers and Fluids, 2016, 134-135, 190-195.	2.5	18
10	Self-driven penetration of droplets into non-wetting capillaries. Computers and Fluids, 2017, 154, 211-215.	2.5	17
11	Effects of a chemically heterogeneous island on the dynamic contact angles of droplets. Applied Surface Science, 2019, 486, 337-343.	6.1	17
12	Ratio dependence of contact angle for droplet wetting on chemically heterogeneous substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 237-242.	4.7	14
13	Droplet impact on groove-patterned surfaces: The role of the groove patterns and impact velocities. Colloids and Interface Science Communications, 2020, 37, 100287.	4.1	10
14	Calculation of 1D and 2D densities in VMD: A flexible and easy-to-use code. Computer Physics Communications, 2021, 266, 108032.	7.5	10
15	ContactAngleCalculator: An Automated, Parametrized, and Flexible Code for Contact Angle Estimation in Visual Molecular Dynamics. Journal of Chemical Information and Modeling, 2022, 62, 6302-6308.	5.4	10
16	Dynamical Water Ingress and Dissolution at the Amorphous–Crystalline Cellulose Interface. Biomacromolecules, 2021, 22, 3884-3891.	5.4	9
17	Apply surface wettability gradient to non-wetting capillary: A simulation study on spontaneous droplet flow. AIP Advances, 2018, 8, .	1.3	8
18	Post-impact dynamics of droplet on bare stranded overhead power transmission lines with varying surface properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 609, 125690.	4.7	7

YUXIANG WANG

#	Article	IF	CITATIONS
19	Many-body dissipative particle dynamics study of droplet impact on superhydrophobic spheres with different size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126493.	4.7	7
20	Rupture process of liquid bridges: The effects of thermal fluctuations. Physical Review E, 2020, 102, 023116.	2.1	6
21	Control the droplet motion by using chemically stripe-patterned surfaces. Chemical Physics, 2020, 532, 110678.	1.9	6
22	Numerical study on surface-heterogeneity-induced anisotropic impact dynamics of droplet. Colloids and Interface Science Communications, 2021, 44, 100495.	4.1	6
23	A numerical study of droplet impact on solid spheres: The effect of surface wettability, sphere size, and initial impact velocity. Chemical Physics, 2021, 550, 111314.	1.9	5