Ander Abarrategi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5511152/publications.pdf

Version: 2024-02-01

257101 315357 2,429 39 24 38 citations g-index h-index papers 39 39 39 4416 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Effect of Ca2+ and Mg2+ Ions Loaded at Degradable PLA Membranes on the Proliferation and Osteoinduction of MSCs. Polymers, 2022, 14, 2422.	2.0	5
2	Integrated OMICs unveil the bone-marrow microenvironment in human leukemia. Cell Reports, 2021, 35, 109119.	2.9	14
3	Ectopic Humanized Mesenchymal Niche in Mice Enables Robust Engraftment of Myelodysplastic Stem Cells. Blood Cancer Discovery, 2021, 2, 135-145.	2.6	21
4	Mesoporous titania coatings with carboxylated pores for complexation and slow delivery of strontium for osteogenic induction. Applied Surface Science, 2020, 510, 145172.	3.1	7
5	Despite mutation acquisition in hematopoietic stem cells, JMML-propagating cells are not always restricted to this compartment. Leukemia, 2020, 34, 1658-1668.	3.3	14
6	Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds. International Journal of Molecular Sciences, 2020, 21, 5447.	1.8	145
7	Treg sensitivity to FasL and relative IL-2 deprivation drive idiopathic aplastic anemia immune dysfunction. Blood, 2020, 136, 885-897.	0.6	14
8	Mesenchymal niche remodeling impairs hematopoiesis via stanniocalcin 1 in acute myeloid leukemia. Journal of Clinical Investigation, 2020, 130, 3038-3050.	3.9	48
9	A Humanized Bone Niche Model Reveals Bone Tissue Preservation Upon Targeting Mitochondrial Complex I in Pseudo-Orthotopic Osteosarcoma. Journal of Clinical Medicine, 2019, 8, 2184.	1.0	8
10	Modeling the human bone marrow niche in mice: From host bone marrow engraftment to bioengineering approaches. Journal of Experimental Medicine, 2018, 215, 729-743.	4.2	91
11	Clonal dynamics in osteosarcoma defined by RGB marking. Nature Communications, 2018, 9, 3994.	5.8	40
12	c-Fos induces chondrogenic tumor formation in immortalized human mesenchymal progenitor cells. Scientific Reports, 2018, 8, 15615.	1.6	12
13	Role of Activator Protein-1 Complex on the Phenotype of Human Osteosarcomas Generated from Mesenchymal Stem Cells. Stem Cells, 2018, 36, 1487-1500.	1.4	11
14	Titanium Coatings and Surface Modifications: Toward Clinically Useful Bioactive Implants. ACS Biomaterials Science and Engineering, 2017, 3, 1245-1261.	2.6	234
15	Increased Vascular Permeability in the Bone Marrow Microenvironment Contributes to Disease Progression and Drug Response in Acute Myeloid Leukemia. Cancer Cell, 2017, 32, 324-341.e6.	7.7	179
16	Bioengineering of Humanized Bone Marrow Microenvironments in Mouse and Their Visualization by Live Imaging. Journal of Visualized Experiments, 2017, , .	0.2	16
17	The combination of CHK1 inhibitor with G-CSF overrides cytarabine resistance in human acute myeloid leukemia. Nature Communications, 2017, 8, 1679.	5.8	36
18	Preclinical modeling of myelodysplastic syndromes. Leukemia, 2017, 31, 2702-2708.	3.3	34

#	Article	IF	Citations
19	Versatile humanized niche model enables study of normal and malignant human hematopoiesis. Journal of Clinical Investigation, 2017, 127, 543-548.	3.9	82
20	Osteosarcoma: Cells-of-Origin, Cancer Stem Cells, and Targeted Therapies. Stem Cells International, 2016, 2016, 1-13.	1.2	164
21	Increased Vascular Permeability in the Bone Marrow Microenvironment Contributes to Acute Myeloid Leukemia Progression and Drug Response. Blood, 2016, 128, 2662-2662.	0.6	2
22	Bone microenvironment signals in osteosarcoma development. Cellular and Molecular Life Sciences, 2015, 72, 3097-3113.	2.4	147
23	Adipose-derived stem cells and platelet-rich plasma for preventive treatment of bisphosphonate-related osteonecrosis of the jaw in a murine model. Journal of Cranio-Maxillo-Facial Surgery, 2015, 43, 1161-1168.	0.7	45
24	Chitosan Scaffolds Containing Calcium Phosphate Salts and rhBMP-2: In Vitro and In Vivo Testing for Bone Tissue Regeneration. PLoS ONE, 2014, 9, e87149.	1.1	28
25	Bone Environment is Essential for Osteosarcoma Development from Transformed Mesenchymal Stem Cells. Stem Cells, 2014, 32, 1136-1148.	1.4	89
26	Cancer stem cells and cisplatinâ€resistant cells isolated from nonâ€smallâ€lung cancer cell lines constitute related cell populations. Cancer Medicine, 2014, 3, 1099-1111.	1.3	66
27	In Vivo Ectopic Implantation Model to Assess Human Mesenchymal Progenitor Cell Potential. Stem Cell Reviews and Reports, 2013, 9, 833-846.	5.6	10
28	Label-free magnetic resonance imaging to locate live cells in three-dimensional porous scaffolds. Journal of the Royal Society Interface, 2012, 9, 2321-2331.	1.5	9
29	Biological Properties of Solid Free Form Designed Ceramic Scaffolds with BMP-2: In Vitro and In Vivo Evaluation. PLoS ONE, 2012, 7, e34117.	1.1	76
30	Mesenchymal niches of bone marrow in cancer. Clinical and Translational Oncology, 2011, 13, 611-616.	1.2	14
31	Chitosan scaffolds for osteochondral tissue regeneration. Journal of Biomedical Materials Research - Part A, 2010, 95A, 1132-1141.	2.1	81
32	In vivo comparison of the effects of RHBMP-2 and RHBMP-4 in osteochondral tissue regeneration., 2010, 20, 367-378.		47
33	Gene expression profile on chitosan/rhBMP-2 films: A novel osteoinductive coating for implantable materials. Acta Biomaterialia, 2009, 5, 2633-2646.	4.1	34
34	Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials, 2008, 29, 94-102.	5.7	402
35	Chitosan Film as rhBMP2 Carrier: Delivery Properties for Bone Tissue Application. Biomacromolecules, 2008, 9, 711-718.	2.6	50
36	Improvement of Porous \hat{l}^2 -TCP Scaffolds with rhBMP-2 Chitosan Carrier Film for Bone Tissue Application. Tissue Engineering - Part A, 2008, 14, 1305-1319.	1.6	50

Ander Abarrategi

#	Article	IF	CITATIONS
37	Urea assisted hydroxyapatite mineralization on MWCNT/CHI scaffolds. Journal of Materials Chemistry, 2008, 18, 5933.	6.7	35
38	Use of rhBMP-2 Activated Chitosan Films To Improve Osseointegration. Biomacromolecules, 2006, 7, 792-798.	2.6	44
39	Poly(ethylene glycol)-crosslinked N-methylene phosphonic chitosan. Preparation and characterization. Carbohydrate Polymers, 2006, 64, 328-336.	5.1	25