List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5511140/publications.pdf Version: 2024-02-01

333 papers	15,824 citations	13827 67 h-index	²²⁷⁶⁴ 112 g-index
339 all docs	339 docs citations	339 times ranked	18562 citing authors

#	Article	IF	CITATIONS
1	Circulating Endothelial Progenitor Cells Are Reduced in Peripheral Vascular Complications of Type 2 Diabetes Mellitus. Journal of the American College of Cardiology, 2005, 45, 1449-1457.	1.2	671
2	Critical Reevaluation of Endothelial Progenitor Cell Phenotypes for Therapeutic and Diagnostic Use. Circulation Research, 2012, 110, 624-637.	2.0	576
3	Number and Function of Endothelial Progenitor Cells as a Marker of Severity for Diabetic Vasculopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2140-2146.	1.1	393
4	Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence. Cell Metabolism, 2017, 25, 1374-1389.e6.	7.2	388
5	Endothelial Dysfunction in Diabetes. Diabetes Care, 2011, 34, S285-S290.	4.3	381
6	Prevalence and impact of diabetes among people infected with SARS-CoV-2. Journal of Endocrinological Investigation, 2020, 43, 867-869.	1.8	371
7	The Oral Dipeptidyl Peptidase-4 Inhibitor Sitagliptin Increases Circulating Endothelial Progenitor Cells in Patients With Type 2 Diabetes. Diabetes Care, 2010, 33, 1607-1609.	4.3	299
8	Downregulation of the Longevity-Associated Protein Sirtuin 1 in Insulin Resistance and Metabolic Syndrome: Potential Biochemical Mechanisms. Diabetes, 2010, 59, 1006-1015.	0.3	268
9	Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia–reperfusion injury in rats. Diabetologia, 2006, 49, 3075-3084.	2.9	250
10	Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax, 2011, 66, 144-150.	2.7	247
11	Autologous stem cell therapy for peripheral arterial disease. Atherosclerosis, 2010, 209, 10-17.	0.4	239
12	Technical notes on endothelial progenitor cells: Ways to escape from the knowledge plateau. Atherosclerosis, 2008, 197, 496-503.	0.4	233
13	NETosis Delays Diabetic Wound Healing in Mice and Humans. Diabetes, 2016, 65, 1061-1071.	0.3	233
14	Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk. European Heart Journal, 2006, 27, 2247-2255.	1.0	220
15	Rosiglitazone Reduces Glucose-Induced Oxidative Stress Mediated by NAD(P)H Oxidase via AMPK-Dependent Mechanism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2627-2633.	1.1	205
16	Peripheral Blood CD34 + KDR + Endothelial Progenitor Cells Are Determinants of Subclinical Atherosclerosis in a Middle-Aged General Population. Stroke, 2006, 37, 2277-2282.	1.0	204
17	Cardiovascular effects of DPP-4 inhibition: Beyond GLP-1. Vascular Pharmacology, 2011, 55, 10-16.	1.0	189
18	NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetologica, 2015, 52, 497-503.	1.2	188

2

#	Article	IF	CITATIONS
19	SGLT2 inhibitors and diabetic ketoacidosis: data from the FDA Adverse Event Reporting System. Diabetologia, 2017, 60, 1385-1389.	2.9	186
20	Autologous Cell Therapy for Peripheral Arterial Disease. Circulation Research, 2017, 120, 1326-1340.	2.0	181
21	Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in Vitro Polarization?. Frontiers in Pharmacology, 2018, 9, 71.	1.6	180
22	Endothelial progenitor cells in the natural history of atherosclerosis. Atherosclerosis, 2007, 194, 46-54.	0.4	173
23	Time Course and Mechanisms of Circulating Progenitor Cell Reduction in the Natural History of Type 2 Diabetes. Diabetes Care, 2010, 33, 1097-1102.	4.3	168
24	Gender Differences in Endothelial Progenitor Cells and Cardiovascular Risk Profile. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 997-1004.	1.1	162
25	Significance of Endothelial Progenitor Cells in Subjects With Diabetes. Diabetes Care, 2007, 30, 1305-1313.	4.3	159
26	Diabetes Impairs Stem Cell and Proangiogenic Cell Mobilization in Humans. Diabetes Care, 2013, 36, 943-949.	4.3	151
27	Glycaemic Control Among People with Type 1 Diabetes During Lockdown for the SARS-CoV-2 Outbreak in Italy. Diabetes Therapy, 2020, 11, 1369-1379.	1.2	150
28	Newly-diagnosed diabetes and admission hyperglycemia predict COVID-19 severity by aggravating respiratory deterioration. Diabetes Research and Clinical Practice, 2020, 168, 108374.	1.1	147
29	Circulating Progenitor Cells Are Reduced in Patients with Severe Lung Disease. Stem Cells, 2006, 24, 1806-1813.	1.4	138
30	The Effects of Dipeptidyl Peptidase-4 Inhibition on Microvascular Diabetes Complications. Diabetes Care, 2014, 37, 2884-2894.	4.3	138
31	High Abundance Proteins Depletion vs Low Abundance Proteins Enrichment: Comparison of Methods to Reduce the Plasma Proteome Complexity. PLoS ONE, 2011, 6, e19603.	1.1	137
32	Diabetes Causes Bone Marrow Autonomic Neuropathy and Impairs Stem Cell Mobilization via Dysregulated <i>p66Shc</i> and <i>Sirt1</i> . Diabetes, 2014, 63, 1353-1365.	0.3	131
33	Diabetes Induces p66shcGene Expression in Human Peripheral Blood Mononuclear Cells: Relationship to Oxidative Stress. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 1130-1136.	1.8	126
34	An unbalanced monocyte polarisation in peripheral blood and bone marrow of patients with type 2 diabetes has an impact on microangiopathy. Diabetologia, 2013, 56, 1856-1866.	2.9	119
35	SGLT2 inhibitors and amputations in the US FDA Adverse Event Reporting System. Lancet Diabetes and Endocrinology,the, 2017, 5, 680-681.	5.5	113
36	Widespread Increase in Myeloid Calcifying Cells Contributes to Ectopic Vascular Calcification in Type 2 Diabetes. Circulation Research, 2011, 108, 1112-1121.	2.0	109

#	Article	IF	CITATIONS
37	<p>Extraglycemic Effects of SGLT2 Inhibitors: A Review of the Evidence</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 161-174.	1.1	105
38	The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. Acta Diabetologica, 2018, 55, 593-601.	1.2	103
39	Low CD34+ cell count and metabolic syndrome synergistically increase the risk of adverse outcomes. Atherosclerosis, 2009, 207, 213-219.	0.4	99
40	PD-L1 genetic overexpression or pharmacological restoration in hematopoietic stem and progenitor cells reverses autoimmune diabetes. Science Translational Medicine, 2017, 9, .	5.8	99
41	Endothelial dysfunction in type 2 diabetes mellitus. Nutrition, Metabolism and Cardiovascular Diseases, 2006, 16, S39-S45.	1.1	98
42	Levels of Circulating Progenitor Cells, Cardiovascular Outcomes and Death. Circulation Research, 2016, 118, 1930-1939.	2.0	97
43	Concise Review: Diabetes, the Bone Marrow Niche, and Impaired Vascular Regeneration. Stem Cells Translational Medicine, 2014, 3, 949-957.	1.6	94
44	Risk of hospitalization for heart failure in patients with type 2 diabetes newly treated with DPP-4 inhibitors or other oral glucose-lowering medications: a retrospective registry study on 127,555 patients from the Nationwide OsMed Health-DB Database. European Heart Journal, 2015, 36, 2454-2462.	1.0	94
45	Microvascular complications in diabetes: A growing concern for cardiologists. International Journal of Cardiology, 2019, 291, 29-35.	0.8	93
46	Glucose tolerance is negatively associated with circulating progenitor cell levels. Diabetologia, 2007, 50, 2156-2163.	2.9	92
47	Exposure to dipeptidylâ€peptidaseâ€4 inhibitors and <scp>COVID</scp> â€19 among people with type 2 diabete A caseâ€control study. Diabetes, Obesity and Metabolism, 2020, 22, 1946-1950.	s: 2.2	91
48	Alternative Activation of Human Macrophages Is Rescued by Estrogen Treatment In Vitro and Impaired by Menopausal Status. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E50-E58.	1.8	89
49	At the crossroads of longevity and metabolism: the metabolic syndrome and lifespan determinant pathways. Aging Cell, 2011, 10, 10-17.	3.0	88
50	Endothelial Progenitor Cells and the Diabetic Paradox. Diabetes Care, 2006, 29, 714-716.	4.3	87
51	Bone Marrow Macrophages Contribute to Diabetic Stem Cell Mobilopathy by Producing Oncostatin M. Diabetes, 2015, 64, 2957-2968.	0.3	85
52	Circulating Progenitor Cell Count Predicts Microvascular Outcomes in Type 2 Diabetic Patients. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 2666-2672.	1.8	85
53	Circulating Progenitor Cell Count for Cardiovascular Risk Stratification: A Pooled Analysis. PLoS ONE, 2010, 5, e11488.	1.1	84
54	The Redox Enzyme p66Shc Contributes to Diabetes and Ischemia-Induced Delay in Cutaneous Wound Healing. Diabetes, 2010, 59, 2306-2314.	0.3	83

#	Article	IF	CITATIONS
55	Head-to-head comparison between flash and continuous glucose monitoring systems in outpatients with type 1 diabetes. Journal of Endocrinological Investigation, 2016, 39, 1391-1399.	1.8	83
56	Emerging Role of Circulating Calcifying Cells in the Bone-Vascular Axis. Circulation, 2012, 125, 2772-2781.	1.6	82
57	Effects of the SGLT2 inhibitor dapagliflozin on HDL cholesterol, particle size, and cholesterol efflux capacity in patients with type 2 diabetes: a randomized placebo-controlled trial. Cardiovascular Diabetology, 2017, 16, 42.	2.7	80
58	Long-term Prediction of Cardiovascular Outcomes by Circulating CD34+ and CD34+CD133+ Stem Cells in Patients With Type 2 Diabetes. Diabetes Care, 2017, 40, 125-131.	4.3	79
59	Potential manipulation of endothelial progenitor cells in diabetes and its complications. Diabetes, Obesity and Metabolism, 2010, 12, 570-583.	2.2	76
60	Pro-inflammatory monocyte-macrophage polarization imbalance in human hypercholesterolemia and atherosclerosis. Atherosclerosis, 2014, 237, 805-808.	0.4	76
61	Concise Review: Perspectives and Clinical Implications of Bone Marrow and Circulating Stem Cell Defects in Diabetes. Stem Cells, 2017, 35, 106-116.	1.4	76
62	Sodiumâ€glucose coâ€ŧransporterâ€2 inhibitors and diabetic ketoacidosis: <scp>A</scp> n updated review of the literature. Diabetes, Obesity and Metabolism, 2018, 20, 25-33.	2.2	76
63	Phenotypic activation and pharmacological outcomes of spontaneously differentiated human monocyte-derived macrophages. Immunobiology, 2015, 220, 545-554.	0.8	75
64	The metabolic syndrome, diabetes and lung dysfunction. Diabetes and Metabolism, 2008, 34, 447-454.	1.4	73
65	Endothelial progenitor cells in diabetes mellitus. BioFactors, 2012, 38, 194-202.	2.6	73
66	Metformin improves putative longevity effectors in peripheral mononuclear cells from subjects with prediabetes. A randomized controlled trial. Nutrition, Metabolism and Cardiovascular Diseases, 2015, 25, 686-693.	1.1	71
67	Defective recruitment, survival and proliferation of bone marrow-derived progenitor cells at sites of delayed diabetic wound healing in mice. Diabetologia, 2011, 54, 945-953.	2.9	70
68	Endothelial dysfunction: Causes and consequences in patients with diabetes mellitus. Diabetes Research and Clinical Practice, 2008, 82, S94-S101.	1.1	66
69	A reappraisal of the role of circulating (progenitor) cells in the pathobiology of diabetic complications. Diabetologia, 2014, 57, 4-15.	2.9	66
70	Acute Effects of Linagliptin on Progenitor Cells, Monocyte Phenotypes, and Soluble Mediators in Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 748-756.	1.8	65
71	Angiogenic Abnormalities in Diabetes Mellitus: Mechanistic and Clinical Aspects. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5431-5444.	1.8	64
72	Stem cell compartmentalization in diabetes and high cardiovascular risk reveals the role of DPP-4 in diabetic stem cell mobilopathy. Basic Research in Cardiology, 2013, 108, 313.	2.5	63

#	Article	IF	CITATIONS
73	Characteristics and outcomes of the hyperglycemic hyperosmolar non-ketotic syndrome in a cohort of 51 consecutive cases at a single center. Diabetes Research and Clinical Practice, 2011, 94, 172-179.	1.1	62
74	miR-30c-5p regulates macrophage-mediated inflammation and pro-atherosclerosis pathways. Cardiovascular Research, 2017, 113, 1627-1638.	1.8	62
75	Endothelial progenitors in pulmonary hypertension: new pathophysiology and therapeutic implications. European Respiratory Journal, 2010, 35, 418-425.	3.1	60
76	Circulating stem cells and cardiovascular outcomes: from basic science to the clinic. European Heart Journal, 2020, 41, 4271-4282.	1.0	59
77	Insulin signaling and life span. Pflugers Archiv European Journal of Physiology, 2010, 459, 301-314.	1.3	56
78	Reduced endothelial progenitor cells and brachial artery flowâ€mediated dilation as evidence of endothelial dysfunction in ocular hypertension and primary openâ€angle glaucoma. Acta Ophthalmologica, 2010, 88, 135-141.	0.6	56
79	Monocyte–macrophage polarization balance in pre-diabetic individuals. Acta Diabetologica, 2013, 50, 977-982.	1.2	53
80	Loss of mitochondrial calcium uniporter rewires skeletal muscle metabolism and substrate preference. Cell Death and Differentiation, 2019, 26, 362-381.	5.0	53
81	Cell-based methods for ex vivo evaluation of human endothelial biology. Cardiovascular Research, 2010, 87, 12-21.	1.8	52
82	Endothelial Progenitor Cells and Vascular Biology in Diabetes Mellitus: Current Knowledge and Future Perspectives. Current Diabetes Reviews, 2005, 1, 41-58.	0.6	50
83	Optimized glycaemic control achieved with add-on basal insulin therapy improves indexes of endothelial damage and regeneration in type 2 diabetic patients with macroangiopathy: a randomized crossover trial comparing detemir versus glargine. Diabetes, Obesity and Metabolism, 2011, 13, 718-725.	2.2	50
84	Diabetes Limits Stem Cell Mobilization Following G-CSF but Not Plerixafor. Diabetes, 2015, 64, 2969-2977.	0.3	50
85	The increased dipeptidyl peptidaseâ€4 activity is not counteracted by optimized glucose control in type 2 diabetes, but is lower in metforminâ€treated patients. Diabetes, Obesity and Metabolism, 2012, 14, 518-522.	2.2	49
86	Dipeptidyl peptidase-4 inhibition and vascular repair by mobilization of endogenous stem cells in diabetes and beyond. Atherosclerosis, 2013, 229, 23-29.	0.4	48
87	NAD+-dependent SIRT1 deactivation has a key role on ischemia–reperfusion-induced apoptosis. Vascular Pharmacology, 2015, 70, 35-44.	1.0	48
88	Cardiovascular outcomes of type 2 diabetic patients treated with SGLT-2 inhibitors versus GLP-1 receptor agonists in real-life. BMJ Open Diabetes Research and Care, 2020, 8, e001451.	1.2	48
89	Diabetes-Associated Myelopoiesis Drives Stem Cell Mobilopathy Through an OSM-p66Shc Signaling Pathway. Diabetes, 2019, 68, 1303-1314.	0.3	47
90	Independent glucose and weight-reducing effects of Liraglutide in a real-world population of type 2 diabetic outpatients. Acta Diabetologica, 2013, 50, 943-949.	1.2	46

#	Article	IF	CITATIONS
91	Depletion of Endothelial Progenitor Cells May Link Pulmonary Fibrosis and Pulmonary Hypertension. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 724-725.	2.5	45
92	Clones of Interstitial Cells From Bovine Aortic Valve Exhibit Different Calcifying Potential When Exposed to Endotoxin and Phosphate. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2165-2172.	1.1	45
93	A perspective on NETosis in diabetes and cardiometabolic disorders. Nutrition, Metabolism and Cardiovascular Diseases, 2016, 26, 1-8.	1.1	45
94	Continued efforts to translate diabetes cardiovascular outcome trials into clinical practice. Cardiovascular Diabetology, 2016, 15, 111.	2.7	44
95	Carotid Plaque Calcification Predicts Future Cardiovascular Events in Type 2 Diabetes. Diabetes Care, 2015, 38, 1937-1944.	4.3	43
96	Characterization of endothelial progenitor cells. Biochemical and Biophysical Research Communications, 2005, 336, 1-2.	1.0	42
97	The good and the bad in the link between insulin resistance and vascular calcification. Atherosclerosis, 2007, 193, 241-244.	0.4	42
98	Procalcific Phenotypic Drift of Circulating Progenitor Cells in Type 2 Diabetes with Coronary Artery Disease. Experimental Diabetes Research, 2012, 2012, 1-7.	3.8	42
99	Diabetes impairs mobilization of stem cells for the treatment of cardiovascular disease. International Journal of Cardiology, 2013, 168, 892-897.	0.8	42
100	Shift of monocyte subsets along their continuum predicts cardiovascular outcomes. Atherosclerosis, 2017, 266, 95-102.	0.4	42
101	Characteristics, prevalence, and outcomes of diabetic foot ulcers in Africa. A systemic review and meta-analysis. Diabetes Research and Clinical Practice, 2018, 142, 63-73.	1.1	42
102	It Is All in the Blood: The Multifaceted Contribution of Circulating Progenitor Cells in Diabetic Complications. Experimental Diabetes Research, 2012, 2012, 1-8.	3.8	41
103	Oxidative stress and vascular disease in diabetes: Is the dichotomization of insulin signaling still valid?. Free Radical Biology and Medicine, 2008, 44, 1209-1215.	1.3	40
104	The p66Shc redox adaptor protein is induced by saturated fatty acids and mediates lipotoxicity-induced apoptosis in pancreatic beta cells. Diabetologia, 2015, 58, 1260-1271.	2.9	40
105	Dipeptidyl-peptidase 4 Inhibition: Linking Metabolic Control to Cardiovascular Protection. Current Pharmaceutical Design, 2014, 20, 2387-2394.	0.9	38
106	Impaired Regeneration Contributes to Poor Outcomes in Diabetic Peripheral Artery Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 34-44.	1.1	37
107	Elevated white blood cell count is associated with prevalence and development of the metabolic syndrome and its components in the general population. Acta Diabetologica, 2012, 49, 445-451.	1.2	36
108	Reinterpreting Cardiorenal Protection of Renal Sodium–Glucose Cotransporter 2 Inhibitors via Cellular Life History Programming. Diabetes Care, 2020, 43, 501-507.	4.3	36

#	Article	IF	CITATIONS
109	Circulating Levels of Endothelial Progenitor Cell Mobilizing Factors in the Metabolic Syndrome. American Journal of Cardiology, 2010, 106, 1606-1608.	0.7	35
110	Sirtuin 1 stabilization by HuR represses TNF-α- and glucose-induced E-selectin release and endothelial cell adhesiveness <i>inÂvitro</i> : relevance to human metabolic syndrome. Clinical Science, 2014, 127, 449-461.	1.8	35
111	SGLT-2Âinhibitors and atrial fibrillation in the Food and Drug Administration adverse event reporting system. Cardiovascular Diabetology, 2021, 20, 39.	2.7	35
112	Disentangling conflicting evidence on DPP-4 inhibitors and outcomes of COVID-19: narrative review and meta-analysis. Journal of Endocrinological Investigation, 2021, 44, 1379-1386.	1.8	35
113	Selective estrogen receptorâ€Î± agonist provides widespread heart and vascular protection with enhanced endothelial progenitor cell mobilization in the absence of uterotrophic action. FASEB Journal, 2010, 24, 2262-2272.	0.2	34
114	Microangiopathy is independently associated with presence, severity and composition of carotid atherosclerosis in type 2 diabetes. Nutrition, Metabolism and Cardiovascular Diseases, 2010, 21, 286-93.	1.1	34
115	An underlying principle for the study of circulating progenitor cells in diabetes and its complications. Diabetologia, 2008, 51, 1091-1094.	2.9	33
116	Effects of androgens on endothelial progenitor cells <i>in vitro</i> and <i>in vivo</i> . Clinical Science, 2009, 117, 355-364.	1.8	33
117	Sensory neuropathy hampers nociception-mediated bone marrow stem cell release in mice and patients with diabetes. Diabetologia, 2015, 58, 2653-2662.	2.9	33
118	Effectiveness of dapagliflozin versus comparators on renal endpoints in the real world: A multicentre retrospective study. Diabetes, Obesity and Metabolism, 2019, 21, 252-260.	2.2	33
119	Diabetes diagnosis from administrative claims and estimation of the true prevalence of diabetes among 4.2 million individuals of the Veneto region (North East Italy). Nutrition, Metabolism and Cardiovascular Diseases, 2020, 30, 84-91.	1.1	33
120	Use and effectiveness of dapagliflozin in routine clinical practice: An Italian multicentre retrospective study. Diabetes, Obesity and Metabolism, 2018, 20, 1781-1786.	2.2	32
121	Endothelial properties of third-trimester amniotic fluid stem cells cultured in hypoxia. Stem Cell Research and Therapy, 2015, 6, 209.	2.4	31
122	Dipeptidyl peptidaseâ€4 inhibitors moderate the risk of genitourinary tract infections associated with sodiumâ€glucose coâ€ŧransporterâ€2 inhibitors. Diabetes, Obesity and Metabolism, 2018, 20, 740-744.	2.2	31
123	The Toll of Lockdown Against COVID-19 on Diabetes Outpatient Care: Analysis From an Outbreak Area in Northeast Italy. Diabetes Care, 2021, 44, e18-e21.	4.3	31
124	p66Shc deletion or deficiency protects from obesity but not metabolic dysfunction in mice and humans. Diabetologia, 2015, 58, 2352-2360.	2.9	29
125	Effects of SGLT2 Inhibitors on Circulating Stem and Progenitor Cells in Patients With Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3773-3782.	1.8	29
126	Endothelial progenitor cells, bronchopulmonary dysplasia and other short-term outcomes of extremely preterm birth. Early Human Development, 2011, 87, 461-465.	0.8	28

#	Article	IF	CITATIONS
127	Myeloid calcifying cells promote atherosclerotic calcification via paracrine activity and allograft inflammatory factor-1 overexpression. Basic Research in Cardiology, 2013, 108, 368.	2.5	28
128	The molecular signature of impaired diabetic wound healing identifies serpinB3 as a healing biomarker. Diabetologia, 2014, 57, 1947-1956.	2.9	28
129	The <i>rs2274911</i> polymorphism in <i><scp>GPRC</scp>6A</i> gene is associated with insulin resistance in normal weight and obese subjects. Clinical Endocrinology, 2017, 86, 185-191.	1.2	28
130	A stepwise approach to assess the impact of clustering cardiometabolic risk factors on carotid intima-media thickness: the metabolic syndrome no-more-than-additive. European Journal of Cardiovascular Prevention and Rehabilitation, 2008, 15, 190-196.	3.1	27
131	The Endothelium Abridges Insulin Resistance to Premature Aging. Journal of the American Heart Association, 2013, 2, e000262.	1.6	26
132	Cardiovascular Actions of GLP-1 and Incretin-Based Pharmacotherapy. Current Diabetes Reports, 2014, 14, 483.	1.7	26
133	High Temporal Resolution Detection of Patient-Specific Glucose Uptake from Human ex Vivo Adipose Tissue On-Chip. Analytical Chemistry, 2015, 87, 6535-6543.	3.2	26
134	Rationale and design of the DARWIN-T2D (DApagliflozin Real World evIdeNce in Type 2 Diabetes). Nutrition, Metabolism and Cardiovascular Diseases, 2017, 27, 1089-1097.	1.1	26
135	The continuum of monocyte phenotypes: Experimental evidence and prognostic utility in assessing cardiovascular risk. Journal of Leukocyte Biology, 2018, 103, 1021-1028.	1.5	26
136	Glucagon-like peptide-1 receptor agonists are not associated with retinal adverse events in the FDA Adverse Event Reporting System. BMJ Open Diabetes Research and Care, 2018, 6, e000475.	1.2	26
137	Pharmacovigilance assessment of the association between Fournier's gangrene and other severe genital adverse events with SGLT-2 inhibitors. BMJ Open Diabetes Research and Care, 2019, 7, e000725.	1.2	26
138	Better cardiovascular outcomes of type 2 diabetic patients treated with GLP-1 receptor agonists versus DPP-4 inhibitors in clinical practice. Cardiovascular Diabetology, 2020, 19, 74.	2.7	26
139	The dipeptidyl peptidase-4 inhibitor Saxagliptin improves function of circulating pro-angiogenic cells from type 2 diabetic patients. Cardiovascular Diabetology, 2014, 13, 92.	2.7	25
140	Switching from twice-daily glargine or detemir to once-daily degludec improves glucose control in type 1 diabetes. An observational study. Nutrition, Metabolism and Cardiovascular Diseases, 2016, 26, 1112-1119.	1.1	25
141	A Deep Learning Approach to Predict Diabetes' Cardiovascular Complications From Administrative Claims. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 3608-3617.	3.9	25
142	Mechanisms of ectopic calcification: implications for diabetic vasculopathy. Cardiovascular Diagnosis and Therapy, 2015, 5, 343-52.	0.7	25
143	Circulating Smooth Muscle Progenitors and Atherosclerosis. Trends in Cardiovascular Medicine, 2010, 20, 133-140.	2.3	24
144	Restoring stem cell mobilization to promote vascular repair in diabetes. Vascular Pharmacology, 2013, 58, 253-258.	1.0	24

#	Article	IF	CITATIONS
145	Comparative effectiveness of liraglutide in the treatment of type 2 diabetes. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2014, 7, 107.	1.1	24
146	Prevalence of hepatic steatosis in patients with type 2 diabetes and response to glucose-lowering treatments. A multicenter retrospective study in Italian specialist care. Journal of Endocrinological Investigation, 2021, 44, 1879-1889.	1.8	24
147	Heme oxygenase-1 is an important modulator in limiting glucose-induced apoptosis in human umbilical vein endothelial cells. Life Sciences, 2008, 82, 383-392.	2.0	23
148	Rosuvastatin stimulates clonogenic potential and anti-inflammatory properties of endothelial progenitor cells. Cell Biology International, 2010, 34, 709-715.	1.4	23
149	Is bone marrow another target of diabetic complications?. European Journal of Clinical Investigation, 2011, 41, 457-463.	1.7	23
150	Circulating myeloid calcifying cells have antiangiogenic activity <i>via</i> thrombospondinâ€1 overexpression. FASEB Journal, 2013, 27, 4355-4365.	0.2	23
151	The pleiotropic cardiovascular effects of dipeptidyl peptidaseâ€4 inhibitors. British Journal of Clinical Pharmacology, 2018, 84, 1686-1695.	1.1	23
152	Improved Function of Circulating Angiogenic Cells Is Evident in Type 1 Diabetic Islet-Transplanted Patients. American Journal of Transplantation, 2010, 10, 2690-2700.	2.6	22
153	Diabetes mellitus as a poor mobilizer condition. Blood Reviews, 2018, 32, 184-191.	2.8	22
154	Cholesterol lowering therapies and achievement of targets for primary and secondary cardiovascular prevention in type 2 diabetes: unmet needs in a large population of outpatients at specialist clinics. Cardiovascular Diabetology, 2020, 19, 190.	2.7	22
155	The IL-8-CXCR1/2 axis contributes to diabetic kidney disease. Metabolism: Clinical and Experimental, 2021, 121, 154804.	1.5	22
156	Characteristics and mortality of type 2 diabetic patients hospitalized for severe iatrogenic hypoglycemia. Diabetes Research and Clinical Practice, 2009, 84, 267-272.	1.1	21
157	Effects of the SGLT2 inhibitor dapagliflozin on cardiac function evaluated by impedance cardiography in patients with type 2 diabetes. Secondary analysis of a randomized placebo-controlled trial. Cardiovascular Diabetology, 2019, 18, 106.	2.7	21
158	Mitochondrial Calcium Uptake Is Instrumental to Alternative Macrophage Polarization and Phagocytic Activity. International Journal of Molecular Sciences, 2019, 20, 4966.	1.8	21
159	Trend 2010–2018 in the clinical use of GLP-1 receptor agonists for the treatment of type 2 diabetes in routine clinical practice: an observational study from Northeast Italy. Acta Diabetologica, 2020, 57, 367-375.	1.2	20
160	Effectiveness of dulaglutide vs liraglutide and exenatide once-weekly. A real-world study and meta-analysis of observational studies. Metabolism: Clinical and Experimental, 2020, 106, 154190.	1.5	20
161	A role for TGF-beta in transforming endothelial progenitor cells into neointimal smooth muscle cells. Atherosclerosis, 2010, 211, 32-35.	0.4	19
162	The metabolic syndrome influences the response to incretin-based therapies. Acta Diabetologica, 2011, 48, 219-225.	1.2	19

#	Article	IF	CITATIONS
163	Increased tissue endothelial progenitor cells in end-stage lung diseases with pulmonary hypertension. Journal of Heart and Lung Transplantation, 2012, 31, 1025-1030.	0.3	19
164	Atorvastatin Reduces Circulating Osteoprogenitor Cells and Tâ€Cell <scp>RANKL</scp> Expression in Osteoporotic Women: Implications for the Bone–Vascular Axis. Cardiovascular Therapeutics, 2016, 34, 13-20.	1.1	19
165	Fixed versus flexible combination of GLPâ€l receptor agonists with basal insulin in type 2 diabetes: A retrospective multicentre comparative effectiveness study. Diabetes, Obesity and Metabolism, 2019, 21, 2542-2552.	2.2	19
166	Switching to Degludec From Other Basal Insulins Is Associated With Reduced Hypoglycemia Rates: A Prospective Study. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5977-5990.	1.8	19
167	Euglycemic Ketoacidosis. Current Diabetes Reports, 2020, 20, 25.	1.7	19
168	Enrolment criteria for diabetes cardiovascular outcome trials do not inform on generalizability to clinical practice: The case of glucagonâ€ike peptideâ€i receptor agonists. Diabetes, Obesity and Metabolism, 2020, 22, 817-827.	2.2	19
169	Is the Metabolic Syndrome a Cardiovascular Risk Factor Beyond Its Specific Components?. Journal of the American College of Cardiology, 2007, 49, 2465.	1.2	18
170	Mechanisms and Significance of Progenitor Cell Reduction in the Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 2009, 7, 5-10.	0.5	18
171	Endothelial progenitor cells as resident accessory cells for post-ischemic angiogenesis. Atherosclerosis, 2009, 204, 20-22.	0.4	18
172	Insulin-induced glucose control improves HDL cholesterol levels but not reverse cholesterol transport in type 2 diabetic patients. Atherosclerosis, 2014, 235, 415-417.	0.4	18
173	Circulating Stem Cells Associate With Adiposity and Future Metabolic Deterioration in Healthy Subjects. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 4570-4578.	1.8	18
174	Intraclass differences in the risk of hospitalization for heart failure among patients with type 2 diabetes initiating a dipeptidyl peptidaseâ€4 inhibitor or a sulphonylurea: <scp>R</scp> esults from the <scp>OsMed H</scp> ealthâ€ <scp>DB</scp> registry. Diabetes, Obesity and Metabolism, 2017, 19, 1416-1424.	2.2	18
175	Observational research on sodium glucose coâ€transporterâ€2 inhibitors: A real breakthrough?. Diabetes, Obesity and Metabolism, 2018, 20, 2711-2723.	2.2	18
176	Nonâ€genomic mechanisms in the estrogen regulation of glycolytic protein levels in endothelial cells. FASEB Journal, 2020, 34, 12768-12784.	0.2	18
177	Pharmacologic PPAR-Î ³ Activation Reprograms Bone Marrow Macrophages and Partially Rescues HSPC Mobilization in Human and Murine Diabetes. Diabetes, 2020, 69, 1562-1572.	0.3	18
178	Direct effects of DPP-4 inhibition on the vasculature. Reconciling basic evidence with lack of clinical evidence. Vascular Pharmacology, 2015, 73, 1-3.	1.0	17
179	Interplay between gut microbiota and <i>p66Shc</i> affects obesityâ€associated insulin resistance. FASEB Journal, 2018, 32, 4004-4015.	0.2	17
180	Similar effectiveness of dapagliflozin and GLPâ€1 receptor agonists concerning combined endpoints in routine clinical practice: A multicentre retrospective study. Diabetes, Obesity and Metabolism, 2019, 21, 1886-1894.	2.2	17

#	Article	IF	CITATIONS
181	A view on the quality of diabetes care in Italy and the role of Diabetes Clinics from the 2018 ARNO Diabetes Observatory. Nutrition, Metabolism and Cardiovascular Diseases, 2020, 30, 1945-1953.	1.1	17
182	Clinical burden of diabetes in Italy in 2018: a look at a systemic disease from the ARNO Diabetes Observatory. BMJ Open Diabetes Research and Care, 2020, 8, e001191.	1.2	17
183	Positioning sulphonylureas in a modern treatment algorithm for patients with type 2 diabetes: Expert opinion from a European consensus panel. Diabetes, Obesity and Metabolism, 2020, 22, 1705-1713.	2.2	17
184	Effectiveness of Dulaglutide in the Real World and in Special Populations of Type 2 Diabetic Patients. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2617-e2625.	1.8	17
185	Comparative effectiveness of dapagliflozin vs <scp>DPP</scp> â€4 inhibitors on a composite endpoint of <scp>HbA1c</scp> , body weight and blood pressure reduction in the real world. Diabetes/Metabolism Research and Reviews, 2021, 37, e3353.	1.7	17
186	Inhibition of SGLT2 Rescues Bone Marrow Cell Traffic for Vascular Repair: Role of Glucose Control and Ketogenesis. Diabetes, 2021, 70, 1767-1779.	0.3	17
187	Improving statin treatment strategies to reduce LDL-cholesterol: factors associated with targets' attainment in subjects with and without type 2 diabetes. Cardiovascular Diabetology, 2021, 20, 144.	2.7	17
188	Activation profiles of monocyte-macrophages and HDL function in healthy women in relation to menstrual cycle and in polycystic ovary syndrome patients. Endocrine, 2019, 66, 360-369.	1.1	16
189	Modulation of Obesity and Insulin Resistance by the Redox Enzyme and Adaptor Protein p66Shc. International Journal of Molecular Sciences, 2019, 20, 985.	1.8	16
190	The IGFBP3/TMEM219 pathway regulates beta cell homeostasis. Nature Communications, 2022, 13, 684.	5.8	16
191	Endothelial Progenitor Cells in Cerebrovascular Disease. Stroke, 2005, 36, 1112-1113.	1.0	15
192	Critical Assessment of Putative Endothelial Progenitor Phenotypes. Experimental Hematology, 2007, 35, 1479-1480.	0.2	15
193	Performance of the Steno type 1 risk engine for cardiovascular disease prediction in Italian patients with type 1 diabetes. Nutrition, Metabolism and Cardiovascular Diseases, 2020, 30, 1813-1819.	1.1	15
194	The BET Protein Inhibitor Apabetalone Rescues Diabetes-Induced Impairment of Angiogenic Response by Epigenetic Regulation of Thrombospondin-1. Antioxidants and Redox Signaling, 2022, 36, 667-684.	2.5	15
195	Impaired endothelial progenitor cell recruitment may contribute to heart transplant microvasculopathy. Journal of Heart and Lung Transplantation, 2011, 30, 70-76.	0.3	14
196	Hypoglycemic Syndrome in a Patient with Proinsulin-Only Secreting Pancreatic Adenoma (Proinsulinoma). Case Reports in Medicine, 2011, 2011, 1-5.	0.3	14
197	Short-term statin discontinuation increases endothelial progenitor cells without inflammatory rebound in type 2 diabetic patients. Vascular Pharmacology, 2015, 67-69, 21-29.	1.0	14
198	Pharmacovigilance Evaluation of the Association Between DPP-4 Inhibitors and Heart Failure: Stimulated Reporting and Moderation by Drug Interactions. Diabetes Therapy, 2018, 9, 851-861.	1.2	14

#	Article	IF	CITATIONS
199	Exposure to dipeptidylâ€peptidase 4 inhibitors and the risk of pneumonia among people with type 2 diabetes: Retrospective cohort study and metaâ€analysis. Diabetes, Obesity and Metabolism, 2020, 22, 1925-1934.	2.2	14
200	Circulating Stem/Progenitor Cells as Prognostic Biomarkers in Macro- and Microvascular Disease: A Narrative Review of Prospective Observational Studies. Current Medicinal Chemistry, 2018, 25, 4507-4517.	1.2	14
201	Arterio-venous gradient of endothelial progenitor cells across renal artery stenosis. Atherosclerosis, 2005, 182, 189-191.	0.4	13
202	Maternal Insulin Therapy Increases Fetal Endothelial Progenitor Cells During Diabetic Pregnancy. Diabetes Care, 2008, 31, 808-810.	4.3	13
203	Amelioration of Glucose Control Mobilizes Circulating Pericyte Progenitor Cells in Type 2 Diabetic Patients with Microangiopathy. Experimental Diabetes Research, 2012, 2012, 1-8.	3.8	13
204	Ectopic calcification in diabetic vascular disease. Expert Opinion on Therapeutic Targets, 2014, 18, 595-609.	1.5	13
205	Simvastatin Rapidly and Reversibly Inhibits Insulin Secretion in Intact Single-Islet Cultures. Diabetes Therapy, 2016, 7, 679-693.	1.2	13
206	DPP-4 inhibition has no acute effect on BNP and its N-terminal pro-hormone measured by commercial immune-assays. A randomized cross-over trial in patients with type 2 diabetes. Cardiovascular Diabetology, 2017, 16, 22.	2.7	13
207	Vitamin D status and non-alcoholic fatty liver disease in patients with type 1 diabetes. Journal of Endocrinological Investigation, 2019, 42, 1099-1107.	1.8	13
208	<p>Long-Acting Injectable GLP-1 Receptor Agonists for the Treatment of Adults with Type 2 Diabetes: Perspectives from Clinical Practice</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 4221-4234.	1.1	13
209	Stem cell mobilization with plerixafor and healing of diabetic ischemic wounds: A phase IIa , randomized, doubleâ€blind , placeboâ€controlled trial. Stem Cells Translational Medicine, 2020, 9, 965-973.	1.6	13
210	Diabetes mellitus impairs circulating proangiogenic granulocytes. Diabetologia, 2020, 63, 1872-1884.	2.9	13
211	Circulating CD34+ cells, pulmonary hypertension, and myelofibrosis. Blood, 2006, 108, 1776-1777.	0.6	12
212	Autologous Transplantation of Granulocyte Colony-Stimulating Factor-Mobilized Peripheral Blood Mononuclear Cells Improves Critical Limb Ischemia in Diabetes: Response to Huang et al Diabetes Care, 2006, 29, 478-479.	4.3	12
213	A Look at the Bone Marrow Predicts the Global Outcome. Circulation Research, 2015, 116, 232-234.	2.0	12
214	Hypoglycemia affects the changes in endothelial progenitor cell levels during insulin therapy in type 2 diabetic patients. Journal of Endocrinological Investigation, 2015, 38, 733-738.	1.8	12
215	Effects of Age, Diabetes, and Vascular Disease on Growth Differentiation Factor 11: First-in-Human Study. Diabetes Care, 2015, 38, e118-e119.	4.3	12
216	Comparative Effectiveness of DPP-4 Inhibitors Versus Sulfonylurea for the Treatment of Type 2 Diabetes in Routine Clinical Practice: A Retrospective Multicenter Real-World Study. Diabetes Therapy, 2018, 9, 1477-1490.	1.2	12

#	Article	IF	CITATIONS
217	p66Shc gene expression in peripheral blood mononuclear cells and progression of diabetic complications. Cardiovascular Diabetology, 2018, 17, 16.	2.7	12
218	Clinical efficacy and safety of angiogenesis inhibitors: sex differences and current challenges. Cardiovascular Research, 2022, 118, 988-1003.	1.8	12
219	Cardiovascular effectiveness of human-based vs. exendin-based glucagon like peptide-1 receptor agonists: a retrospective study in patients with type 2 diabetes. European Journal of Preventive Cardiology, 2021, 28, 22-29.	0.8	12
220	Circulating Cellular Players in Vascular Calcification. Current Pharmaceutical Design, 2014, 20, 5889-5896.	0.9	12
221	Performance of intermittently scanned continuous glucose monitoring systems in people with type 1 diabetes: A pooled analysis. Diabetes, Obesity and Metabolism, 2022, 24, 522-529.	2.2	12
222	High confidence and sensitivity four-dimensional fractionation for human plasma proteome analysis. Amino Acids, 2012, 43, 2199-2202.	1.2	11
223	The Peritoneum as a Natural Scaffold for Vascular Regeneration. PLoS ONE, 2012, 7, e33557.	1.1	11
224	Diabetes modifies the relationships among carotid plaque calcification, composition and inflammation. Atherosclerosis, 2015, 241, 533-538.	0.4	11
225	Reduced levels of circulating progenitor cells in juvenile idiopathic arthritis are counteracted by anti TNF-α therapy. BMC Musculoskeletal Disorders, 2015, 16, 103.	0.8	11
226	Synergistic Interactions Among Metabolic Syndrome Components and Homeostasis Model Assessment of Insulin Resistance in a Middle-Aged General Population over Time. Metabolic Syndrome and Related Disorders, 2015, 13, 171-178.	0.5	11
227	Exposure to insulin degludec during pregnancy: report of a small series and review of the literature. Journal of Endocrinological Investigation, 2019, 42, 345-349.	1.8	11
228	Improved long-term cardiovascular outcomes after intensive versus standard screening of diabetic complications: an observational study. Cardiovascular Diabetology, 2019, 18, 117.	2.7	11
229	Challenges and opportunities in realâ€world evidence on the renal effects of sodiumâ€glucose cotransporterâ€2 inhibitors. Diabetes, Obesity and Metabolism, 2022, 24, 177-186.	2.2	11
230	Impaired Hematopoietic Stem/Progenitor Cell Traffic and Multi-organ Damage in Diabetes. Stem Cells, 2022, 40, 716-723.	1.4	11
231	Pharmacologic Targeting of Endothelial Progenitor Cells. Cardiovascular & Hematological Disorders Drug Targets, 2010, 10, 16-32.	0.2	10
232	Plerixafor improves the endothelial health balance. The effect of diabetes analysed by polychromatic flow cytometry. Atherosclerosis, 2016, 251, 373-380.	0.4	10
233	Diabetes and ischaemic stroke: a deadly association. European Heart Journal, 2018, 39, 2387-2389.	1.0	10
234	Effects of exenatide long-acting release on cardiovascular events and mortality in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Acta Diabetologica, 2019, 56, 1051-1060.	1.2	10

#	Article	IF	CITATIONS
235	Comparative effectiveness of exenatide onceâ€weekly versus liraglutide in routine clinical practice: A retrospective multicentre study and metaâ€analysis of observational studies. Diabetes, Obesity and Metabolism, 2019, 21, 1255-1260.	2.2	10
236	Lung Ultrasound Patterns and Clinical-Laboratory Correlates during COVID-19 Pneumonia: A Retrospective Study from North East Italy. Journal of Clinical Medicine, 2021, 10, 1288.	1.0	10
237	Arrhythmogenic Cardiomyopathy Is a Multicellular Disease Affecting Cardiac and Bone Marrow Mesenchymal Stromal Cells. Journal of Clinical Medicine, 2021, 10, 1871.	1.0	10
238	Low levels of endothelial progenitor cells correlate with disease duration and activity in patients with Behçet's disease. Clinical and Experimental Rheumatology, 2009, 27, 814-21.	0.4	10
239	First Isolation of Burkholderia cepacia from a Deep Neck Abscess in a Diabetic Patient Successfully Treated with Hyperbaric Oxygen. Journal of Clinical Microbiology, 2005, 43, 529-529.	1.8	9
240	Pathophysiology of Circulating Progenitor Cells in Pulmonary Disease and Parallels with Cardiovascular Disease. American Journal of Respiratory Cell and Molecular Biology, 2006, 35, 403-404.	1.4	9
241	Prediabetes influences cardiac rehabilitation in coronary artery disease patients. European Journal of Preventive Cardiology, 2012, 19, 382-388.	0.8	9
242	Predictors of early discontinuation of dapagliflozin versus other glucose-lowering medications: a retrospective multicenter real-world study. Journal of Endocrinological Investigation, 2020, 43, 329-336.	1.8	9
243	Diabetes pharmacotherapy and circulating stem/progenitor cells. State of the art and evidence gaps. Current Opinion in Pharmacology, 2020, 55, 151-156.	1.7	9
244	Hyperglycemia, glucocorticoid therapy, and outcome of COVID-19. Diabetes Research and Clinical Practice, 2020, 168, 108449.	1.1	9
245	Incidence of heart failure in patients with type 1 diabetes: a systematic review of observational studies. Journal of Endocrinological Investigation, 2021, 44, 745-753.	1.8	9
246	Fenofibrate increases circulating haematopoietic stem cells in people with diabetic retinopathy: a randomised, placebo-controlled trial. Diabetologia, 2021, 64, 2334-2344.	2.9	9
247	The emerging role of endothelial progenitor cells in pulmonary hypertension and diffuse lung diseases. Sarcoidosis Vasculitis and Diffuse Lung Diseases, 2007, 24, 85-93.	0.2	9
248	Hematopoietic progenitor cell liabilities and alarmins S100A8/A9â€related inflammaging associate with frailty and predict poor cardiovascular outcomes in older adults. Aging Cell, 2022, 21, e13545.	3.0	9
249	Two Cases of Statin-Induced Rhabdomyolysis Associated with Mononeuropathy. Clinical Drug Investigation, 2010, 30, 347-350.	1.1	8
250	Vascular Stem and Progenitor Cells in Diabetic Complications. Experimental Diabetes Research, 2012, 2012, 1-2.	3.8	8
251	Endothelial Progenitor Cells Are Reduced in Acromegalic Patients and Can Be Restored by Treatment With Somatostatin Analogs. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2549-E2556.	1.8	8
252	Effects of Hypoglycemia on Circulating Stem and Progenitor Cells in Diabetic Patients. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 1048-1055.	1.8	8

#	Article	IF	CITATIONS
253	Changes in the Prescription of Glucoseâ€Lowering Medications in Patients With Type 2 Diabetes Mellitus After a Cardiovascular Event: A Call to Action From the DATAFILE Study. Journal of the American Heart Association, 2019, 8, e012244.	1.6	8
254	Effects of glucose variability on hematopoietic stem/progenitor cells in patients with type 1 diabetes. Journal of Endocrinological Investigation, 2021, 44, 119-126.	1.8	8
255	Hyperglycemia, Reduced Hematopoietic Stem Cells, and Outcome of COVID-19. Diabetes, 2022, 71, 788-794.	0.3	8
256	In hospital risk factors for acute kidney injury and its burden in patients with Sars-Cov-2 infection: a longitudinal multinational study. Scientific Reports, 2022, 12, 3474.	1.6	8
257	Impaired hemodynamic response to meal intake in insulin-resistant subjects: an impedance cardiography approach. American Journal of Clinical Nutrition, 2011, 93, 926-933.	2.2	7
258	Low CD34+ cells, high neutrophils and the metabolic syndrome are associated with an increased risk of venous thromboembolism. Clinical Science, 2013, 125, 211-222.	1.8	7
259	Vascular smooth muscle cells and monocyte–macrophages accomplice in the accelerated atherosclerosis of insulin resistance states. Cardiovascular Research, 2014, 103, 194-195.	1.8	7
260	Effects of dose escalating liraglutide from 1.2 to 1.8Âmg in clinical practice: a case–control study. Journal of Endocrinological Investigation, 2015, 38, 1357-1363.	1.8	7
261	A Multinational Real-World Study on the Clinical Characteristics of Patients with TypeÂ2 Diabetes Initiating Dapagliflozin in Southern Europe. Diabetes Therapy, 2020, 11, 423-436.	1.2	7
262	Effects of Basal Insulin on Lipid Profile Compared to Other Classes of Antihyperglycemic Agents in Type 2 Diabetic Patients. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 2464-2474.	1.8	7
263	Delphi-Based Consensus on Treatment Intensification in Type 2 Diabetes Subjects Failing Basal Insulin Supported Oral Treatment: Focus on Basal Insulin + GLP-1 Receptor Agonist Combination Therapies. Diabetes Therapy, 2021, 12, 781-800.	1.2	7
264	Low P66shc with High SerpinB3 Levels Favors Necroptosis and Better Survival in Hepatocellular Carcinoma. Biology, 2021, 10, 363.	1.3	7
265	Changes in markers of hepatic steatosis and fibrosis in patients with type 2 diabetes during treatment with glucagon-like peptide-1 receptor agonists. A multicenter retrospective longitudinal study. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 3474-3483.	1.1	7
266	Cardiovascular outcomes after initiating GLP-1 receptor agonist or basal insulin for the routine treatment of type 2 diabetes: a region-wide retrospective study. Cardiovascular Diabetology, 2021, 20, 222.	2.7	7
267	A Perspective on Sirtuins in the Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 2015, 13, 161-164.	0.5	6
268	Pharmacologic targeting of the diabetic stem cell mobilopathy. Pharmacological Research, 2018, 135, 18-24.	3.1	6
269	How to interpret the role of SDF-11 \pm on diabetic complications during therapy with DPP-4 inhibitors. Cardiovascular Diabetology, 2018, 17, 22.	2.7	6
270	Deintensification of basal-bolus insulin after initiation of GLP-1RA in patients with type 2 diabetes under routine care. Diabetes Research and Clinical Practice, 2021, 173, 108686.	1.1	6

#	Article	IF	CITATIONS
271	Hematopoietic and Nonhematopoietic <i>p66Shc</i> Differentially Regulates Stem Cell Traffic and Vascular Response to Ischemia in Diabetes. Antioxidants and Redox Signaling, 2022, 36, 593-607.	2.5	6
272	Outcomes of patients with type 2 diabetes treated with SGLT-2 inhibitors versus DPP-4 inhibitors. An Italian real-world study in the context of other observational studies. Diabetes Research and Clinical Practice, 2021, 179, 109024.	1,1	6
273	Strategies for Enhancing Progenitor Cell Mobilization and Function in Diabetes. Current Vascular Pharmacology, 2012, 10, 310-321.	0.8	5
274	Counterpoint to the hypothesis that SGLT2 inhibitors protect the heart by antagonizing leptin. Diabetes, Obesity and Metabolism, 2018, 20, 1367-1368.	2.2	5
275	Bisdemethoxycurcumin and Its Cyclized Pyrazole Analogue Differentially Disrupt Lipopolysaccharide Signalling in Human Monocyte-Derived Macrophages. Mediators of Inflammation, 2018, 2018, 1-13.	1.4	5
276	SGLT-2 Inhibitors and Circulating Progenitor Cells in Diabetes. Cell Metabolism, 2020, 31, 883.	7.2	5
277	Managing diabetes in diabetic patients with COVID: where do we start from?. Acta Diabetologica, 2021, 58, 1441-1450.	1.2	5
278	Initial treatment of diabetes in Italy. A nationwide population-based study from of the ARNO Diabetes Observatory. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 2661-2668.	1.1	5
279	A miR-125/Sirtuin-7 pathway drives the pro-calcific potential of myeloid cells in diabetic vascular disease. Diabetologia, 2022, 65, 1555-1568.	2.9	5
280	Why to screen heart disease in diabetes. Atherosclerosis, 2009, 204, 11-15.	0.4	4
281	Enhancing Endothelial Progenitor Cell Function Through Selective Estrogen Receptor Modulation: A Potential Approach to Cardiovascular Risk Reduction. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2010, 8, 147-155.	0.4	4
282	Arterio-venous gradients of endothelial progenitor cells reveal a complex kinetics in human limb ischemia. Clinical Hemorheology and Microcirculation, 2012, 50, 293-300.	0.9	4
283	Age-associated cardiovascular risk and metabolomics ofÂmitochondrial dysfunction. Atherosclerosis, 2014, 232, 257-258.	0.4	4
284	Task for Today: Complete the Puzzle of Circulating Stem Cells and the Atherosclerotic Burden. Circulation Research, 2016, 119, 502-504.	2.0	4
285	Subclinical Hypothyroidism and Metabolic Syndrome: A Common Association by Chance or a Cardiovascular Risk Driver?. Metabolic Syndrome and Related Disorders, 2016, 14, 378-380.	0.5	4
286	Reduced circulating stem cells associate with excess fasting and post-load NEFA exposure in healthy adults with normal glucose tolerance. Atherosclerosis, 2017, 261, 117-123.	0.4	4
287	Cardiovascular and heart failure outcomes with type 2 diabetes therapies: how important is weight loss?. Lancet Diabetes and Endocrinology,the, 2020, 8, 353-355.	5.5	4
288	Assessment of simple strategies for identifying undiagnosed diabetes and prediabetes in the general population. Journal of Endocrinological Investigation, 2021, 44, 75-81.	1.8	4

#	Article	IF	CITATIONS
289	Perturbation of Glucose Homeostasis During Acute Illness: Stress Hyperglycemia and Relative Hypoglycemia. Diabetes Care, 2022, 45, 769-771.	4.3	4
290	Effectiveness of adding alarms to flash glucose monitoring in adults with type 1 diabetes under routine care. Acta Diabetologica, 2022, 59, 921-928.	1.2	4
291	IDegLira for the Real-World Treatment of Type 2 Diabetes in Italy: Protocol and Interim Results from the REX Observational Study. Diabetes Therapy, 2022, 13, 1483-1497.	1.2	4
292	A case of orbital myositis associated with rheumatoid arthritis. Annals of the Rheumatic Diseases, 2003, 62, 383-383.	0.5	3
293	Endothelial Progenitor Cells in Coronary Artery Disease. Journal of the American College of Cardiology, 2007, 49, 1585.	1.2	3
294	Induced pluripotent stem (iPS) cells and endothelial cell generation: SIRT-ainly a good idea!. Atherosclerosis, 2010, 212, 36-39.	0.4	3
295	A diseased bone marrow fuels atherosclerosis in diabetes. Atherosclerosis, 2013, 226, 337-338.	0.4	3
296	Transposition of cardiovascular outcome trial effects to the real-world population of patients with type 2 diabetes. Cardiovascular Diabetology, 2021, 20, 103.	2.7	3
297	Response to a massive SARS-CoV-2 infection in a nursing home transformed into a caring center. Aging Clinical and Experimental Research, 2021, 33, 443-450.	1.4	3
298	Glycemic control after switching to faster aspart in adults with type 1 diabetes. Journal of Endocrinological Investigation, 2022, 45, 1181-1188.	1.8	3
299	Time-series analysis of multidimensional clinical-laboratory data by dynamic Bayesian networks reveals trajectories of COVID-19 outcomes. Computer Methods and Programs in Biomedicine, 2022, 221, 106873.	2.6	3
300	Endothelial progenitor cells and erectile dysfunction. European Heart Journal, 2006, 28, 639-640.	1.0	2
301	Exploring interactions among metabolic syndrome traits. Methods and meaning. Atherosclerosis, 2010, 210, 45-47.	0.4	2
302	Insulin treatment in patients with diabetes andÂheart failure: defendant on the stand. European Journal of Heart Failure, 2018, 20, 896-897.	2.9	2
303	Phenotyping normal kidney function in elderly patients with type 2 diabetes: a cross-sectional multicentre study. Acta Diabetologica, 2018, 55, 1121-1129.	1.2	2
304	Switching to Degludec is Associated with Reduced Hypoglycaemia, Irrespective of Definition Used or Patient Characteristics: Secondary Analysis of the ReFLeCT Prospective, Observational Study. Diabetes Therapy, 2020, 11, 2159-2167.	1.2	2
305	105.3: Analysis of Autoimmune Re-activation After COVID-19 mRNA Vaccination in Pancreas Transplant Recipients. Transplantation, 2021, 105, S2-S2.	0.5	2
306	The effect of GLP-1 receptor agonists on N-terminal pro-brain natriuretic peptide. A scoping review and metanalysis. International Journal of Cardiology, 2022, 357, 123-127.	0.8	2

#	Article	IF	CITATIONS
307	Role of endothelial progenitor cells in diabetes mellitus. Expert Review of Endocrinology and Metabolism, 2009, 4, 575-589.	1.2	1
308	Nutraceutical antioxidants for vascular protection? Please mind regression toward the mean. Atherosclerosis, 2011, 215, 30-31.	0.4	1
309	Persistent Reduction of Circulating Myeloid Calcifying Cells in Acromegaly: Relevance to the Bone–Vascular Axis. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 2044-2050.	1.8	1
310	Introduction to the review series on atherosclerotic calcification. Atherosclerosis, 2020, 306, 57-58.	0.4	1
311	SGLT2 inhibitors for heart failure with reduced ejection fraction: a real EMPEROR?. Expert Opinion on Pharmacotherapy, 2021, 22, 647-650.	0.9	1
312	A simple way to spotlight hidden heart failure in type 2 diabetes?. European Journal of Heart Failure, 2021, 23, 1094-1096.	2.9	1
313	Why diabetes outpatient clinics should not close during pandemic crises. Journal of Endocrinological Investigation, 2021, 44, 1795-1798.	1.8	1
314	Effectiveness of remote screening for diabetic retinopathy among patients referred to Mozambican Diabetes Association (AMODIA): a retrospective observational study. Acta Diabetologica, 2022, 59, 563.	1.2	1
315	Development of metabolic syndrome and electrocardiographic features of left ventricular hypertrophy in middle-aged working subjects. Journal of Endocrinological Investigation, 2013, 36, 1027-31.	1.8	1
316	Performance assessment across different care settings of a heart failure hospitalisation risk-score for type 2 diabetes using administrative claims. Scientific Reports, 2022, 12, 7762.	1.6	1
317	Comparative effectiveness of Glargine 300 U/mL vs. Degludec 100 U/mL in patients with type 2 diabetes switching from 1Ű generation basal insulins. Nutrition, Metabolism and Cardiovascular Diseases, 2022,	1.1	1
318	Critical confounders in the prognostic role of cellular biomarkers. Kidney International, 2009, 75, 755.	2.6	0
319	Vascular Rejuvenation Through the Stromal Cell-Derived Factor 1α/CXC Chemokine Receptor Type 4/Janus Kinase 2 Signalling Pathway. Hypertension, 2012, 59, 1097-1098.	1.3	0
320	Developmental cardiovascular biology meets regenerative medicine at Islet-1. Atherosclerosis, 2012, 223, 282-283.	0.4	0
321	Diabetes and the Cardiovascular System. Endocrinology, 2018, , 1-29.	0.1	Ο
322	Diabetes and the Cardiovascular System. Endocrinology, 2019, , 1-29.	0.1	0
323	Crossâ€ŧalk of healthy and impaired human tissues for dissection of disease pathogenesis. Biotechnology Progress, 2019, 35, e2766.	1.3	0
324	Reduced Rates of Hypoglycemia in Type 1 or Type 2 Diabetes After Switching to Insulin Degludec: Results from the Italian Cohort of the ReFLeCT Study. Diabetes Therapy, 2020, 11, 2909-2920.	1.2	0

#	Article	IF	CITATIONS
325	Recurrent Neural Network to Predict Renal Function Impairment in Diabetic Patients via Longitudinal Routine Check-up Data. Lecture Notes in Computer Science, 2021, , 329-337.	1.0	Ο
326	Where diabetes care meets cardiovascular research: our cardiovascular perspective at a Centre devoted to diabetes research and care. European Heart Journal, 2021, 42, 2417-2419.	1.0	0
327	Diabetes and the Cardiovascular System. Endocrinology, 2018, , 131-159.	0.1	Ο
328	Diabetes and the Cardiovascular System. Endocrinology, 2019, , 1-29.	0.1	0
329	Diabetic retinopathy: a tool for cardiovascular risk stratification. Diabetes Mellitus, 2019, 22, 455-460.	0.5	Ο
330	Diabetes and the Cardiovascular System. Endocrinology, 2020, , 131-159.	0.1	0
331	Response to Chia Siang Kow and colleagues. Acta Diabetologica, 2022, 59, 287.	1.2	Ο
332	Glycaemic Control Achieves Sustained Increases of Circulating Endothelial Progenitor Cells in Patients Hospitalized for Decompensated Diabetes: An Observational Study. Diabetes Therapy, 0, , .	1.2	0
333	Vergleich der Wirksamkeit von Insulin glargin 300 E/ml (Gla-300) und Insulin degludec 100 E/ml (IDeg-100) bei insulin-naiven Erwachsenen mit Typ-2-Diabetes (T2D): Die RESTORE-2-Studie. Diabetologie Und Stoffwechsel, 2022, , .	0.0	Ο