
Po-Chun Hsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5511017/publications.pdf Version: 2024-02-01

PO-CHUN HSU

#	Article	IF	CITATIONS
1	Bioâ€Inspired Computational Design of Vascularized Electrodes for Highâ€Performance Fastâ€Charging Batteries Optimized by Deep Learning. Advanced Energy Materials, 2022, 12, .	10.2	9
2	A Biomimetic Electrospun Membrane Supports the Differentiation and Maturation of Kidney Epithelium from Human Stem Cells. Bioengineering, 2022, 9, 188.	1.6	9
3	A Triple-Mode Midinfrared Modulator for Radiative Heat Management of Objects with Various Emissivity. Nano Letters, 2021, 21, 4106-4114.	4.5	36
4	Design and Utilization of Infrared Light for Interfacial Solar Water Purification. ACS Energy Letters, 2021, 6, 2645-2657.	8.8	29
5	A Triple-Mode Mid-infrared Modulator for All-Surface Radiative Thermal Management. , 2021, , .		0
6	Ultra-Wideband Transparent Conductive Electrode for Electrochromic Synergistic Solar and Radiative Heat Management. ACS Energy Letters, 2021, 6, 3906-3915.	8.8	56
7	Metalized polyamide heterostructure as a moisture-responsive actuator for multimodal adaptive personal heat management. Science Advances, 2021, 7, eabj7906.	4.7	59
8	In-situ grown hollow Fe3O4 onto graphene foam nanocomposites with high EMI shielding effectiveness and thermal conductivity. Composites Science and Technology, 2020, 188, 107975.	3.8	64
9	Green Treatment of Phosphate from Wastewater Using a Porous Bio-Templated Graphene Oxide/MgMn-Layered Double Hydroxide Composite. IScience, 2020, 23, 101065.	1.9	21
10	Integration of daytime radiative cooling and solar heating for year-round energy saving in buildings. Nature Communications, 2020, 11, 6101.	5.8	188
11	Multispectral Thermal Management Designs for Net-Zero Energy Buildings. , 2020, 2, 1624-1643.		50
12	Photon-engineered radiative cooling textiles. Science, 2020, 370, 784-785.	6.0	68
13	Lithium Extraction from Seawater through Pulsed Electrochemical Intercalation. Joule, 2020, 4, 1459-1469.	11.7	152
14	Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry. Nature Communications, 2019, 10, 2440.	5.8	156
15	Direct/Alternating Current Electrochemical Method for Removing and Recovering Heavy Metal from Water Using Graphene Oxide Electrode. ACS Nano, 2019, 13, 6431-6437.	7.3	181
16	Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nature Sustainability, 2018, 1, 105-112.	11.5	370
17	In Situ Investigation on the Nanoscale Capture and Evolution of Aerosols on Nanofibers. Nano Letters, 2018, 18, 1130-1138.	4.5	65
18	Morphology and property investigation of primary particulate matter particles from different sources. Nano Research, 2018, 11, 3182-3192.	5.8	54

Ро-Сним Hsu

#	Article	IF	CITATIONS
19	Core–Shell Nanofibrous Materials with High Particulate Matter Removal Efficiencies and Thermally Triggered Flame Retardant Properties. ACS Central Science, 2018, 4, 894-898.	5.3	73
20	Spectrally Selective Nanocomposite Textile for Outdoor Personal Cooling. Advanced Materials, 2018, 30, e1802152.	11.1	362
21	A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nature Energy, 2017, 2, .	19.8	388
22	Thermal Management in Nanofiber-Based Face Mask. Nano Letters, 2017, 17, 3506-3510.	4.5	228
23	Lithium Metal Anodes with an Adaptive "Solid-Liquid―Interfacial Protective Layer. Journal of the American Chemical Society, 2017, 139, 4815-4820.	6.6	460
24	Warming up human body by nanoporous metallized polyethylene textile. Nature Communications, 2017, 8, 496.	5.8	280
25	Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries. Nano Research, 2017, 10, 3754-3764.	5.8	78
26	A dual-mode textile for human body radiative heating and cooling. Science Advances, 2017, 3, e1700895.	4.7	399
27	Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nature Nanotechnology, 2017, 12, 993-999.	15.6	376
28	Nanofiber Air Filters with High-Temperature Stability for Efficient PM _{2.5} Removal from the Pollution Sources. Nano Letters, 2016, 16, 3642-3649.	4.5	456
29	Radiative human body cooling by nanoporous polyethylene textile. Science, 2016, 353, 1019-1023.	6.0	764
30	Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nature Nanotechnology, 2016, 11, 1098-1104.	15.6	681
31	Efficient solar-driven water splitting by nanocone BiVO ₄ -perovskite tandem cells. Science Advances, 2016, 2, e1501764.	4.7	351
32	Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nature Energy, 2016, 1, .	19.8	253
33	Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy, 2016, 1, .	19.8	1,516
34	Roll-to-Roll Transfer of Electrospun Nanofiber Film for High-Efficiency Transparent Air Filter. Nano Letters, 2016, 16, 1270-1275.	4.5	289
35	High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO ₂ Nanospheres in Poly(ethylene oxide). Nano Letters, 2016, 16, 459-465.	4.5	791
36	Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers. Nano Letters, 2015, 15, 2740-2745.	4.5	782

Ро-Сним Hsu

#	Article	IF	CITATIONS
37	Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. Nano Letters, 2015, 15, 4206-4213.	4.5	410
38	Transparent air filter for high-efficiency PM2.5 capture. Nature Communications, 2015, 6, 6205.	5.8	690
39	Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nature Communications, 2015, 6, 7261.	5.8	1,006
40	A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy and Environmental Science, 2015, 8, 2371-2376.	15.6	397
41	Electrochemical tuning of olivine-type lithium transition-metal phosphates as efficient water oxidation catalysts. Energy and Environmental Science, 2015, 8, 1719-1724.	15.6	167
42	Polymer Nanofiber-Guided Uniform Lithium Deposition for Battery Electrodes. Nano Letters, 2015, 15, 2910-2916.	4.5	495
43	Effect of Chemical Structure on Polymer-Templated Growth of Graphitic Nanoribbons. ACS Nano, 2015, 9, 9043-9049.	7.3	6
44	Use of low cost and easily regenerated Prussian Blue cathodes for efficient electrical energy recovery in a microbial battery. Energy and Environmental Science, 2015, 8, 546-551.	15.6	63
45	Personal Thermal Management by Metallic Nanowire-Coated Textile. Nano Letters, 2015, 15, 365-371.	4.5	415
46	Bifacial solar cell with SnS absorber by vapor transport deposition. Applied Physics Letters, 2014, 105, .	1.5	30
47	Large-Scale Production of Graphene Nanoribbons from Electrospun Polymers. Journal of the American Chemical Society, 2014, 136, 17284-17291.	6.6	26
48	Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nature Communications, 2014, 5, 3943.	5.8	369
49	Facile synthesis of Li2S–polypyrrole composite structures for high-performance Li2S cathodes. Energy and Environmental Science, 2014, 7, 672.	15.6	277
50	High Electrochemical Selectivity of Edge versus Terrace Sites in Two-Dimensional Layered MoS ₂ Materials. Nano Letters, 2014, 14, 7138-7144.	4.5	269
51	Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nature Communications, 2014, 5, 5017.	5.8	530
52	Electrolessly Deposited Electrospun Metal Nanowire Transparent Electrodes. Journal of the American Chemical Society, 2014, 136, 10593-10596.	6.6	189
53	Compound-induced changes in thermal, structural and optical properties of indium–gallium–zinc oxides prepared by sol–gel method. Journal of Sol-Gel Science and Technology, 2014, 71, 260-266.	1.1	5
54	Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nature Communications, 2014, 5, 4345.	5.8	411

Ро-Сним Hsu

#	Article	IF	CITATIONS
55	A portable fiber-optic Raman analyzer for fast real-time screening and identifying cocrystal formation of drug-coformer via grinding process. Microchemical Journal, 2013, 110, 15-20.	2.3	31
56	Electrochemical tuning of vertically aligned MoS ₂ nanofilms and its application in improving hydrogen evolution reaction. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19701-19706.	3.3	894
57	Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires. Nature Communications, 2013, 4, 2522.	5.8	279
58	Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature Communications, 2013, 4, 1331.	5.8	1,884
59	Theophylline–citric acid co-crystals easily induced by DSC–FTIR microspectroscopy or different storage conditions. Asian Journal of Pharmaceutical Sciences, 2013, 8, 19-27.	4.3	39
60	A transparent electrode based on a metal nanotrough network. Nature Nanotechnology, 2013, 8, 421-425.	15.6	851
61	Microbial battery for efficient energy recovery. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15925-15930.	3.3	67
62	Passivation Coating on Electrospun Copper Nanofibers for Stable Transparent Electrodes. ACS Nano, 2012, 6, 5150-5156.	7.3	176
63	Solid-state thermal behavior and stability studies of theophylline–citric acid cocrystals prepared by neat cogrinding or thermal treatment. Journal of Solid State Chemistry, 2012, 192, 238-245.	1.4	26
64	Raman and X-ray diffraction studies of superconducting FeSe under pressure. Physica C: Superconductivity and Its Applications, 2010, 470, S502-S503.	0.6	4
65	Low-temperature fabrication of superconducting FeSe thin films by pulsed laser deposition. Thin Solid Films, 2010, 519, 1540-1545.	0.8	43
66	Pulsed laser deposition of (MoO3)1â^'x(V2O5)x thin films: Preparation, characterization and gasochromic studies. Thin Solid Films, 2010, 519, 1552-1557.	0.8	32
67	Controlled Growth of ZnO Nanopagoda Arrays with Varied Lamination and Apex Angles. Crystal Growth and Design, 2009, 9, 3161-3167.	1.4	49