Elizabeth R Young

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5511013/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proton-controlled non-exponential photoluminescence in a pyridylamidine-substituted Re(<scp>i</scp>) complex. Dalton Transactions, 2021, 50, 7265-7276.	3.3	1
2	ZnS Ultrathin Interfacial Layers for Optimizing Carrier Management in Sb ₂ S ₃ -based Photovoltaics. ACS Applied Materials & Interfaces, 2021, 13, 11861-11868.	8.0	20
3	Elucidating Mechanistic Details of Photo-Induced Charge Transfer in Antimony Sulfide-Based p-i-n Junctions. Journal of Physical Chemistry C, 2021, 125, 18429-18437.	3.1	2
4	Synthesis, Electrochemistry, and Photophysics of Pd(II) Biladiene Complexes Bearing Varied Substituents at the sp ³ -Hybridized 10-Position. Inorganic Chemistry, 2021, 60, 15797-15807.	4.0	7
5	Spin multiplicity effects in doublet <i>versus</i> singlet emission: the photophysical consequences of a single electron. Chemical Science, 2020, 11, 10212-10219.	7.4	14
6	Electrochemical proton-coupled electron transfer of an anthracene-based azo dye. RSC Advances, 2020, 10, 14804-14811.	3.6	5
7	The Chemistry Women Mentorship Network (ChemWMN): A Tool for Creating Critical Mass in Academic Chemistry. Inorganic Chemistry, 2019, 58, 12493-12496.	4.0	14
8	The Chemistry Women Mentorship Network (ChemWMN): A Tool for Creating Critical Mass in Academic Chemistry. ACS Central Science, 2019, 5, 1625-1629.	11.3	3
9	The Chemistry Women Mentorship Network (ChemWMN): A Tool for Creating Critical Mass in Academic Chemistry. Chemistry of Materials, 2019, 31, 8239-8242.	6.7	1
10	Synthetic Emission Tuning of Carborane-Containing Poly(dihexylfluorene)s. Macromolecules, 2019, 52, 7951-7960.	4.8	25
11	Short Excited-State Lifetimes Enable Photo-Oxidatively Stable Rubrene Derivatives. Journal of Physical Chemistry A, 2019, 123, 7558-7566.	2.5	11
12	Role of Electrostatics in Influencing the Pathway by Which the Excited State of [Ru(bpy) ₃] ²⁺ Is Deactivated by Ferrocene Derivatives. Journal of Physical Chemistry A, 2019, 123, 7673-7682.	2.5	3
13	Modulating absorption and charge transfer in bodipy-carbazole donor–acceptor dyads through molecular design. Dalton Transactions, 2019, 48, 8488-8501.	3.3	20
14	Anthracene-based azo dyes for photo-induced proton-coupled electron transfer. Chemical Communications, 2019, 55, 5874-5877.	4.1	11
15	Adjusting Interfacial Chemistry and Electronic Properties of Photovoltaics Based on a Highly Pure Sb ₂ S ₃ Absorber by Atomic Layer Deposition. ACS Applied Energy Materials, 2019, 2, 8747-8756.	5.1	37
16	Iron hits the mark. Science, 2019, 363, 225-226.	12.6	17
17	Excited State Characterization of Carborane-Containing Poly(dihexyl fluorene)s. Journal of Physical Chemistry A, 2019, 123, 1701-1709.	2.5	13
18	Fluorescence Enhancement Through Incorporation of Chromophores in Polymeric Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 407-413.	3.7	2

Elizabeth R Young

#	Article	IF	CITATIONS
19	Light-Driven, Zirconium-Catalyzed Hydrophosphination with Primary Phosphines. ACS Catalysis, 2018, 8, 6230-6238.	11.2	30
20	pH-Driven Mechanistic Switching from Electron Transfer to Energy Transfer between [Ru(bpy) ₃] ²⁺ and Ferrocene Derivatives. Journal of the American Chemical Society, 2018, 140, 10169-10178.	13.7	18
21	Introduction to Electrochemistry and the Use of Electrochemistry to Synthesize and Evaluate Catalysts for Water Oxidation and Reduction. Journal of Chemical Education, 2016, 93, 1951-1956.	2.3	31
22	Photophysical and Electrochemical Characterization of BODIPY-Containing Dyads Comparing the Influence of an A–D–A versus D–A Motif on Excited-State Photophysics. Journal of Physical Chemistry A, 2016, 120, 8794-8803.	2.5	16
23	Ferrocenyl-amidinium compound as building block for aqueous proton-coupled electron transfer studies. Inorganic Chemistry Communication, 2014, 43, 64-66.	3.9	1
24	Stabilized CdSe-CoPi Composite Photoanode for Light-Assisted Water Oxidation by Transformation of a CdSe/Cobalt Metal Thin Film. ACS Applied Materials & amp; Interfaces, 2013, 5, 2364-2367.	8.0	20
25	Lasing through a strongly-coupled mode by intra-cavity pumping. Optics Express, 2013, 21, 12122.	3.4	32
26	Alternating layer addition approach to CdSe/CdS core/shell quantum dots with near-unity quantum yield and high on-time fractions. Chemical Science, 2012, 3, 2028.	7.4	207
27	Energy transfer mediated by asymmetric hydrogen-bonded interfaces. Chemical Science, 2012, 3, 455-459.	7.4	8
28	Photo-assisted water oxidation with cobalt-based catalyst formed from thin-film cobalt metal on silicon photoanodes. Energy and Environmental Science, 2011, 4, 2058.	30.8	106
29	Direct formation of a water oxidation catalyst from thin-film cobalt. Energy and Environmental Science, 2010, 3, 1726.	30.8	59
30	Comparative PCET Study of a Donorâ Acceptor Pair Linked by Ionized and Nonionized Asymmetric Hydrogen-Bonded Interfaces. Journal of the American Chemical Society, 2009, 131, 7678-7684.	13.7	59
31	Spectral observation of conversion between ionized vs. non-ionized proton-coupled electron transfer interfaces. Chemical Communications, 2008, , 2322.	4.1	15
32	Ground- and Excited-State Reactivity of Iron Porphyrinogens. Inorganic Chemistry, 2007, 46, 607-609.	4.0	20
33	Structurally Homologous β- and <i>meso</i> -Alkynyl Amidinium Porphyrins. Inorganic Chemistry, 2007, 46, 8668-8675.	4.0	25
34	Spectroscopic Determination of Proton Position in the Proton-Coupled Electron Transfer Pathways of Donorâ^'Acceptor Supramolecule Assemblies. Journal of the American Chemical Society, 2006, 128, 10474-10483.	13.7	81
35	Self-Assembling Porphyrin-Modified Peptides. Organic Letters, 2005, 7, 2559-2561.	4.6	46
36	Porphyrin Nanorods. Journal of Physical Chemistry B, 2003, 107, 11339-11345.	2.6	258