Pavel G Georgiev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5510720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Loss of Insulator Activity by Paired Su(Hw) Chromatin Insulators. Science, 2001, 291, 495-498.	6.0	188
2	Telomere elongation is under the control of the RNAi-based mechanism in the Drosophila germline. Genes and Development, 2006, 20, 345-354.	2.7	154
3	Insulators, Not Polycomb Response Elements, Are Required for Long-Range Interactions between Polycomb Targets in <i>Drosophila melanogaster</i> . Molecular and Cellular Biology, 2011, 31, 616-625.	1.1	110
4	Novel genes influencing the expression of the yellow locus and mdg4 (gypsy) in Drosophila melanogaster. Molecular Genetics and Genomics, 1989, 220, 121-126.	2.4	107
5	Heterochromatin Protein 1 Is Involved in Control of Telomere Elongation in Drosophila melanogaster. Molecular and Cellular Biology, 2002, 22, 3204-3218.	1.1	106
6	Two new insulator proteins, Pita and ZIPIC, target CP190 to chromatin. Genome Research, 2015, 25, 89-99.	2.4	106
7	Interaction Between Mutations in the <i>suppressor of Hairy wing</i> and <i>modifier of mdg4</i> Genes of <i>Drosophila melunogaster</i> Affecting the Phenotype of <i>gypsy</i> -Induced Mutations. Genetics, 1996, 142, 425-436.	1.2	100
8	Drosophila BTB/POZ Domains of "ttk Group―Can Form Multimers and Selectively Interact with Each Other. Journal of Molecular Biology, 2011, 412, 423-436.	2.0	94
9	Chromatin insulators and longâ€distance interactions in <i>Drosophila</i> . FEBS Letters, 2014, 588, 8-14.	1.3	89
10	Making connections: Insulators organize eukaryotic chromosomes into independent cis <i>â€</i> regulatory networks. BioEssays, 2014, 36, 163-172.	1.2	87
11	Large-scale ATP-independent nucleosome unfolding by a histone chaperone. Nature Structural and Molecular Biology, 2016, 23, 1111-1116.	3.6	85
12	Evolutionarily Conserved E(y)2/Sus1 Protein Is Essential for the Barrier Activity of Su(Hw)-Dependent Insulators in Drosophila. Molecular Cell, 2007, 27, 332-338.	4.5	84
13	Orientation-dependent interaction between Drosophila insulators is a property of this class of regulatory elements. Nucleic Acids Research, 2008, 36, 7019-7028.	6.5	83
14	Attachment of HeT-A Sequences to Chromosomal Termini in Drosophila melanogaster May Occur by Different Mechanisms. Molecular and Cellular Biology, 2000, 20, 7634-7642.	1.1	82
15	The Mcp Element from the bithorax Complex Contains an Insulator That Is Capable of Pairwise Interactions and Can Facilitate Enhancer-Promoter Communication. Molecular and Cellular Biology, 2005, 25, 3682-3689.	1.1	82
16	PRE-Mediated Bypass of Two Su(Hw) Insulators Targets PcG Proteins to a Downstream Promoter. Developmental Cell, 2006, 11, 117-124.	3.1	77
17	An endogenous Su(Hw) insulator separates theyellowgene from theAchaete-scutegene complex inDrosophila. Development (Cambridge), 2003, 130, 3249-3258.	1.2	74
18	Interaction between the GAGA factor and Mod(mdg4) proteins promotes insulator bypass in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14806-14811.	3.3	73

#	Article	IF	CITATIONS
19	Architectural proteins Pita, Zw5,and ZIPIC contain homodimerization domain and support specific long-range interactions in <i>Drosophila</i> . Nucleic Acids Research, 2016, 44, gkw371.	6.5	66
20	Mechanisms and proteins involved in long-distance interactions. Frontiers in Genetics, 2014, 5, 28.	1.1	64
21	Study of the Functional Interaction between Mcp Insulators from the Drosophila bithorax Complex: Effects of Insulator Pairing on Enhancer-Promoter Communication. Molecular and Cellular Biology, 2007, 27, 3035-3043.	1.1	62
22	Functional role of dimerization and CP190 interacting domains of CTCF protein in Drosophila melanogaster. BMC Biology, 2015, 13, 63.	1.7	62
23	Functional Interaction between the Fab-7 and Fab-8 Boundaries and the Upstream Promoter Region in the <i>Drosophila Abd-B</i> Gene. Molecular and Cellular Biology, 2008, 28, 4188-4195.	1.1	60
24	Red flag on the white reporter: a versatile insulator abuts the white gene in Drosophila and is omnipresent in mini-white constructs. Nucleic Acids Research, 2008, 36, 929-937.	6.5	59
25	Pairing between gypsy Insulators Facilitates the Enhancer Action in trans throughout the Drosophila Genome. Molecular and Cellular Biology, 2005, 25, 9283-9291.	1.1	58
26	Insulator protein Su(Hw) recruits SAGA and Brahma complexes and constitutes part of Origin Recognition Complex-binding sites in the Drosophila genome. Nucleic Acids Research, 2013, 41, 5717-5730.	6.5	58
27	The Novel Transcription Factor e(y)2 Interacts with TAF II 40 and Potentiates Transcription Activation on Chromatin Templates. Molecular and Cellular Biology, 2001, 21, 5223-5231.	1.1	55
28	â€~Insulator bodies' are aggregates of proteins but not of insulators. EMBO Reports, 2008, 9, 440-445.	2.0	55
29	TAF _{II} 40 Protein Is Encoded by the <i>e(y)1</i> Gene: Biological Consequences of Mutations. Molecular and Cellular Biology, 1999, 19, 3769-3778.	1.1	54
30	Drosophila mini-white model system: new insights into positive position effects and the role of transcriptional terminators and gypsy insulator in transgene shielding. Nucleic Acids Research, 2010, 38, 39-47.	6.5	53
31	Selective interactions of boundaries with upstream region of Abd-B promoter in Drosophila bithorax complex and role of dCTCF in this process. Nucleic Acids Research, 2011, 39, 3042-3052.	6.5	53
32	The boundary paradox in the Bithorax complex. Mechanisms of Development, 2015, 138, 122-132.	1.7	53
33	Broken chromosomal ends can be elongated by conversion in Drosophila melanogaster. Chromosoma, 1999, 108, 114-120.	1.0	52
34	Study of Long-Distance Functional Interactions between Su(Hw) Insulators That Can Regulate Enhancer-Promoter Communication in Drosophila melanogaster. Molecular and Cellular Biology, 2006, 26, 754-761.	1.1	51
35	Two Isoforms of Drosophila TRF2 Are Involved in Embryonic Development, Premeiotic Chromatin Condensation, and Proper Differentiation of Germ Cells of Both Sexes. Molecular and Cellular Biology, 2006, 26, 7492-7505.	1.1	49
36	SUMO conjugation is required for the assembly of <i>Drosophila</i> Su(Hw) and Mod(mdg4) into insulator bodies that facilitate insulator complex formation. Journal of Cell Science, 2012, 125, 2064-74.	1.2	49

#	Article	IF	CITATIONS
37	Boundaries of loop domains (insulators): Determinants of chromosome form and function in multicellular eukaryotes. BioEssays, 2017, 39, 1600233.	1.2	47
38	The Ku Protein Complex Is Involved in Length Regulation of Drosophila Telomeres. Genetics, 2005, 170, 221-235.	1.2	46
39	Characterization of Drosophila Telomeric Retroelement TAHRE: Transcription, Transpositions, and RNAi-based Regulation of Expression. Molecular Biology and Evolution, 2007, 24, 2535-2545.	3.5	46
40	Effective Blocking of the White Enhancer Requires Cooperation between Two Main Mechanisms Suggested for the Insulator Function. PLoS Genetics, 2013, 9, e1003606.	1.5	44
41	A novel multidomain transcription coactivator SAYP can also repress transcription in heterochromatin. EMBO Journal, 2005, 24, 97-107.	3.5	43
42	Mechanisms of Enhancer-Promoter Interactions in Higher Eukaryotes. International Journal of Molecular Sciences, 2021, 22, 671.	1.8	43
43	Functional Dissection of the Blocking and Bypass Activities of the Fab-8 Boundary in the Drosophila Bithorax Complex. PLoS Genetics, 2016, 12, e1006188.	1.5	41
44	The GAGA factor regulatory network: Identification of GAGA factor associated proteins. PLoS ONE, 2017, 12, e0173602.	1.1	41
45	Integrity of the Mod(mdg4)-67.2 BTB Domain Is Critical to Insulator Function in Drosophila melanogaster. Molecular and Cellular Biology, 2007, 27, 963-974.	1.1	40
46	Enhancer-Promoter Communication Is Regulated by Insulator Pairing in a <i>Drosophila</i> Model Bigenic Locus. Molecular and Cellular Biology, 2008, 28, 5469-5477.	1.1	39
47	Eukaryotic enhancers: common features, regulation, and participation in diseases. Cellular and Molecular Life Sciences, 2015, 72, 2361-2375.	2.4	39
48	Zeste can facilitate long-range enhancer–promoter communication and insulator bypass in Drosophila melanogaster. Chromosoma, 2009, 118, 665-674.	1.0	35
49	Transcriptional read-through is not sufficient to induce an epigenetic switch in the silencing activity of Polycomb response elements. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14930-14935.	3.3	35
50	Insulators form gene loops by interacting with promoters in <i>Drosophila</i> . Development (Cambridge), 2011, 138, 4097-4106.	1.2	34
51	Enhancer of terminal gene conversion, a New Mutation inDrosophila melanogasterThat Induces Telomere Elongation by Gene Conversion. Genetics, 2002, 162, 1301-1312.	1.2	33
52	Boundaries mediate long-distance interactions between enhancers and promoters in the Drosophila Bithorax complex. PLoS Genetics, 2018, 14, e1007702.	1.5	32
53	The insulator functions of the <i>Drosophila</i> polydactyl C2H2 zinc finger protein CTCF: Necessity versus sufficiency. Science Advances, 2020, 6, eaaz3152.	4.7	31
54	Architectural protein Pita cooperates with dCTCF in organization of functional boundaries in Bithorax Complex. Development (Cambridge), 2017, 144, 2663-2672.	1.2	29

#	Article	IF	CITATIONS
55	Complete reconstitution of bypass and blocking functions in a minimal artificial <i>Fab-7</i> insulator from <i>Drosophila bithorax</i> complex. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13462-13467.	3.3	29
56	Drosophila telomeres: the non-telomerase alternative. Chromosome Research, 2005, 13, 431-441.	1.0	28
57	Transcription through enhancers suppresses their activity in Drosophila. Epigenetics and Chromatin, 2013, 6, 31.	1.8	27
58	Opbp is a new architectural/insulator protein required for ribosomal gene expression. Nucleic Acids Research, 2017, 45, 12285-12300.	6.5	27
59	New Properties of Drosophila Fab-7 Insulator. Genetics, 2007, 177, 113-121.	1.2	26
60	The bithorax complex iab-7 Polycomb response element has a novel role in the functioning of the Fab-7 chromatin boundary. PLoS Genetics, 2018, 14, e1007442.	1.5	26
61	Insertions of Hybrid P Elements in the yellow Gene of Drosophila Cause a Large Variety of Mutant Phenotypes. Genetics, 1997, 146, 583-594.	1.2	24
62	Drosophila Su(Hw) Insulator Can Stimulate Transcription of a Weakened yellow Promoter Over a Distance. Genetics, 2005, 170, 1133-1142.	1.2	22
63	Drosophila DNA-Binding Proteins in Polycomb Repression. Epigenomes, 2018, 2, 1.	0.8	22
64	Small Drosophila zinc finger C2H2 protein with an N-terminal zinc finger-associated domain demonstrates the architecture functions. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194446.	0.9	22
65	Mitomycin C induces genomic rearrangements involving transposable elements in Drosophila melanognster. Molecular Genetics and Genomics, 1990, 220, 229-233.	2.4	21
66	hobo Induced Rearrangements in the yellow Locus Influence the Insulation Effect of the gypsy su(Hw)-Binding Region in Drosophila melanogaster. Genetics, 1998, 149, 1393-1405.	1.2	21
67	Multiple interactions are involved in a highly specific association of the Mod(mdg4)-67.2 isoform with the Su(Hw) sites in Drosophila. Open Biology, 2017, 7, 170150.	1.5	20
68	Interactions between BTB domain of CP190 and two adjacent regions in Su(Hw) are required for the insulator complex formation. Chromosoma, 2018, 127, 59-71.	1.0	20
69	N-terminal domain of the architectural protein CTCF has similar structural organization and ability to self-association in bilaterian organisms. Scientific Reports, 2020, 10, 2677.	1.6	20
70	Presenilin-1 Delta E9 Mutant Induces STIM1-Driven Store-Operated Calcium Channel Hyperactivation in Hippocampal Neurons. Molecular Neurobiology, 2018, 55, 4667-4680.	1.9	19
71	Highly conserved ENY2/Sus1 protein binds to <i>Drosophila</i> CTCF and is required for barrier activity. Epigenetics, 2014, 9, 1261-1270.	1.3	18
72	Distinct Elements Confer the Blocking and Bypass Functions of the Bithorax <i>Fab-8</i> Boundary. Genetics, 2019, 213, 865-876.	1.2	18

#	Article	IF	CITATIONS
73	CTCF As an Example of DNA-Binding Transcription Factors Containing Clusters of C2H2-Type Zinc Fingers. Acta Naturae, 2021, 13, 31-46.	1.7	18
74	P-Element Insertion at the polyhomeotic Gene Leads to Formation of a Novel Chimeric Protein That Negatively Regulates yellow Gene Expression in P-Element-Induced Alleles of Drosophila melanogaster. Genetics, 1998, 150, 687-697.	1.2	18
75	Structural basis of diversity and homodimerization specificity of zinc-finger-associated domains in Drosophila. Nucleic Acids Research, 2021, 49, 2375-2389.	6.5	17
76	Mechanism and functional role of the interaction between CP190 and the architectural protein Pita in Drosophila melanogaster. Epigenetics and Chromatin, 2021, 14, 16.	1.8	17
77	Drosophila gypsy insulator and yellow enhancers regulate activity of yellow promoter through the same regulatory element. Chromosoma, 2008, 117, 137-145.	1.0	16
78	The simultaneous interaction of MSL2 with CLAMP and DNA provides redundancy in the initiation of dosage compensation in Drosophila males. Development (Cambridge), 2019, 146, .	1.2	16
79	Insulators of higher eukaryotes: Properties, mechanisms of action, and role in transcriptional regulation. Russian Journal of Genetics, 2006, 42, 845-857.	0.2	14
80	E(y)2/Sus1 is required for blocking PRE silencing by the Wari insulator in Drosophila melanogaster. Chromosoma, 2010, 119, 243-253.	1.0	14
81	Functional dissection of the developmentally restricted BEN domain chromatin boundary factor Insensitive. Epigenetics and Chromatin, 2019, 12, 2.	1.8	14
82	Mapping of functional elements of the Fab-6 boundary involved in the regulation of the Abd-B hox gene in Drosophila melanogaster. Scientific Reports, 2021, 11, 4156.	1.6	14
83	Clinical Correlations of Polycomb Repressive Complex 2 in Different Tumor Types. Cancers, 2021, 13, 3155.	1.7	14
84	Boundaries potentiate polycomb response element-mediated silencing. BMC Biology, 2021, 19, 113.	1.7	14
85	EAST Organizes Drosophila Insulator Proteins in the Interchromosomal Nuclear Compartment and Modulates CP190 Binding to Chromatin. PLoS ONE, 2015, 10, e0140991.	1.1	13
86	New Properties of Drosophila scs and scs' Insulators. PLoS ONE, 2013, 8, e62690.	1.1	13
87	The BEN Domain Protein Insensitive Binds to the <i>Fab-7</i> Chromatin Boundary To Establish Proper Segmental Identity in <i>Drosophila</i> . Genetics, 2018, 210, 573-585.	1.2	12
88	The same domain of Su(Hw) is required for enhancer blocking and direct promoter repression. Scientific Reports, 2019, 9, 5314.	1.6	12
89	Role of Su(Hw) zinc finger 10 and interaction with CP190 and Mod(mdg4) proteins in recruiting the Su(Hw) complex to chromatin sites in Drosophila. PLoS ONE, 2018, 13, e0193497.	1.1	12
90	Handling three regulatory elements in one transgene: combined use of cre-lox, FLP-FRT, and I-SceI recombination systems. BioTechniques, 2005, 39, 871-876.	0.8	11

#	Article	IF	CITATIONS
91	Removal of extra sequences with I- <i>Sce</i> I in combination with CRISPR/Cas9 technique for precise gene editing in <i>Drosophila</i> . BioTechniques, 2019, 66, 198-201.	0.8	11
92	HIPP1 stabilizes the interaction between CP190 and Su(Hw) in the Drosophila insulator complex. Scientific Reports, 2019, 9, 19102.	1.6	11
93	Mechanisms of CP190 Interaction with Architectural Proteins in Drosophila Melanogaster. International Journal of Molecular Sciences, 2021, 22, 12400.	1.8	11
94	The su(Hw) Insulator Can Disrupt Enhancer-Promoter Interactions When Located More than 20 Kilobases Away from the Drosophila achaete-scute Complex. Molecular and Cellular Biology, 1999, 19, 3443-3456.	1.1	10
95	Interaction between a pair of gypsy insulators or between heterologous gypsy and Wari insulators modulates Flp site-specific recombination in Drosophila melanogaster. Chromosoma, 2010, 119, 425-434.	1.0	10
96	Drosophila architectural protein CTCF is not essential for fly survival and is able to function independently of CP190. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194733.	0.9	10
97	Transvection at the End of the Truncated Chromosome in Drosophila melanogaster. Genetics, 2003, 163, 1375-1387.	1.2	9
98	Comparative interactome analysis of the PRE DNA-binding factors: purification of the Combgap-, Zeste-, Psq-, and Adf1-associated proteins. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	9
99	EAST affects the activity of Su(Hw) insulators by two different mechanisms in Drosophila melanogaster. Chromosoma, 2017, 126, 299-311.	1.0	8
100	The gypsy Insulators Flanking yellow Enhancers Do Not Form a Separate Transcriptional Domain in Drosophila melanogaster: The Enhancers Can Activate an Isolated yellow Promoter. Genetics, 2002, 160, 1549-1560.	1.2	8
101	Mobile genetic elements in <i>Drosophila melanogaster</i> (recent experiments). Genome, 1989, 31, 920-928.	0.9	6
102	Transposition of Regulatory Elements by P-Element-Mediated Rearrangements in Drosophila melanogaster. Genetics, 2006, 172, 2283-2291.	1.2	6
103	A Non-stop identity complex (NIC) supervises enterocyte identity and protects from premature aging. ELife, 2021, 10, .	2.8	6
104	Dimerization Activity of a Disordered N-Terminal Domain from Drosophila CLAMP Protein. International Journal of Molecular Sciences, 2022, 23, 3862.	1.8	6
105	Structural insights into highly similar spatial organization of zinc-finger associated domains with a very low sequence similarity. Structure, 2022, 30, 1004-1015.e4.	1.6	6
106	Redundant enhancers in the <i>iab-5</i> domain cooperatively activate <i>Abd-B</i> in the A5 and A6 abdominal segments of Drosophila. Development (Cambridge), 2021, 148, .	1.2	5
107	P element-mediated duplications of genomic regions in Drosophila melanogaster. Chromosoma, 2002, 111, 126-138.	1.0	4
108	Arabidopsis termination elements increase transgene expression in tobacco plants. Plant Cell, Tissue and Organ Culture, 2015, 120, 1107-1116.	1.2	4

#	Article	lF	CITATIONS
109	The effect of transcription on enhancer activity in Drosophila melanogaster. Russian Journal of Genetics, 2016, 52, 29-37.	0.2	4
110	Conserved sequences in the Drosophila mod(mdg4) intron promote poly(A)-independent transcription termination and trans-splicing. Nucleic Acids Research, 2018, 46, 10608-10618.	6.5	4
111	Structural basis for interaction between CLAMP and MSL2 proteins involved in the specific recruitment of the dosage compensation complex in <i>Drosophila</i> . Nucleic Acids Research, 2022, 50, 6521-6531.	6.5	4
112	Transvection in Drosophila: trans-interaction between yellow enhancers and promoter is strongly suppressed by a cis-promoter only in certain genomic regions. Chromosoma, 2017, 126, 431-441.	1.0	3
113	Transcription termination sequences support the expression of transgene product secreted with milk. Transgenic Research, 2019, 28, 401-410.	1.3	3
114	The Mod(mdg4) Component of the Su(Hw) Insulator Inserted in the P Transposon Can Repress Its Mobility in Drosophila melanogaster. Genetics, 2004, 167, 1275-1280.	1.2	2
115	Long-distance interactions between regulatory elements are suppressed at the end of a terminally deficient chromosome in Drosophila melanogaster. Chromosoma, 2008, 117, 41-50.	1.0	2
116	Distant interactions between enhancers and promoters in Drosophila melanogaster are mediated by transgene-flanking Su(Hw) insulators. Russian Journal of Genetics, 2011, 47, 917-922.	0.2	2
117	1A2 Insulator can interact with promoter of hsp70 gene in D. melanogaster. Russian Journal of Genetics, 2013, 49, 371-379.	0.2	1
118	The bithorax complex of Drosophila melanogaster as a model for studying specific long-distance interactions between enhancers and promoters. Russian Journal of Genetics, 2015, 51, 440-448.	0.2	1
119	The P-Ph Protein-Mediated Repression of yellow Expression Depends on Different cis- and trans-Factors in Drosophila melanogaster. Genetics, 1999, 152, 1641-1652.	1.2	1
120	An endogenous Su(Hw) insulator separates the yellow gene from the Achaete-scute gene complex in Drosophila. Development (Cambridge), 2008, 135, 787-787.	1.2	0
121	Role of yellow gene sequences from –70 to–146 bp in the transcriptional activation at the end of terminally truncated chromosome in Drosophila melanogaster. Doklady Biochemistry and Biophysics, 2015, 462, 147-150.	0.3	0