Charles F Mactutus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5510176/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Intraneuronal β-Amyloid Accumulation: Aging HIV-1 Human and HIV-1 Transgenic Rat Brain. Viruses, 2022, 14, 1268.	3.3	2
2	A Rat Model of EcoHIV Brain Infection. Journal of Visualized Experiments, 2021, , .	0.3	6
3	Chronic SSRI treatment reverses HIV-1 protein-mediated synaptodendritic damage. Journal of NeuroVirology, 2021, 27, 403-421.	2.1	5
4	Microglial HIV-1 Expression: Role in HIV-1 Associated Neurocognitive Disorders. Viruses, 2021, 13, 924.	3.3	19
5	S-Equol mitigates motivational deficits and dysregulation associated with HIV-1. Scientific Reports, 2021, 11, 11870.	3.3	11
6	HIV-Associated Apathy/Depression and Neurocognitive Impairments Reflect Persistent Dopamine Deficits. Cells, 2021, 10, 2158.	4.1	18
7	Neurodevelopmental Processes in the Prefrontal Cortex Derailed by Chronic HIV-1 Viral Protein Exposure. Cells, 2021, 10, 3037.	4.1	5
8	Selective Estrogen Receptor β Agonists: a Therapeutic Approach for HIV-1 Associated Neurocognitive Disorders. Journal of NeuroImmune Pharmacology, 2020, 15, 264-279.	4.1	14
9	S-EQUOL: a neuroprotective therapeutic for chronic neurocognitive impairments in pediatric HIV. Journal of NeuroVirology, 2020, 26, 704-718.	2.1	7
10	HIV Infection and Neurocognitive Disorders in the Context of Chronic Drug Abuse: Evidence for Divergent Findings Dependent upon Prior Drug History. Journal of NeuroImmune Pharmacology, 2020, 15, 715-728.	4.1	20
11	Ballistic Labeling of Pyramidal Neurons in Brain Slices and in Primary Cell Culture. Journal of Visualized Experiments, 2020, , .	0.3	13
12	A Hydrophobic Tissue Clearing Method for Rat Brain Tissue. Journal of Visualized Experiments, 2020, , .	0.3	2
13	An Empirical Mediation Analysis of Mechanisms Underlying HIV-1-Associated Neurocognitive Disorders. Brain Research, 2019, 1724, 146436.	2.2	8
14	Neurorestoration of Sustained Attention in a Model of HIV-1 Associated Neurocognitive Disorders. Frontiers in Behavioral Neuroscience, 2019, 13, 169.	2.0	17
15	Disruption of Timing: NeuroHIV Progression in the Post-cART Era. Scientific Reports, 2019, 9, 827.	3.3	44
16	Selective monoaminergic and histaminergic circuit dysregulation following long-term HIV-1 protein exposure. Journal of NeuroVirology, 2019, 25, 540-550.	2.1	25
17	The Power of Interstimulus Interval for the Assessment of Temporal Processing in Rodents. Journal of Visualized Experiments, 2019, , .	0.3	6
18	Posterior ventral tegmental area-nucleus accumbens shell circuitry modulates response to novelty. PLoS ONE, 2019, 14, e0213088.	2.5	8

CHARLES F MACTUTUS

#	Article	IF	CITATIONS
19	Diagnostic and prognostic biomarkers for HAND. Journal of NeuroVirology, 2019, 25, 686-701.	2.1	15
20	ldentification of Dopamine D1-Alpha Receptor Within Rodent Nucleus Accumbens by an Innovative RNA In Situ Detection Technology. Journal of Visualized Experiments, 2018, , .	0.3	9
21	Unraveling Individual Differences In The HIV-1 Transgenic Rat: Therapeutic Efficacy Of Methylphenidate. Scientific Reports, 2018, 8, 136.	3.3	18
22	Evolution of the HIV-1 transgenic rat: utility in assessing the progression of HIV-1-associated neurocognitive disorders. Journal of NeuroVirology, 2018, 24, 229-245.	2.1	44
23	Doseâ€dependent neurocognitive deficits following postnatal day 10 HIVâ€1 viral protein exposure: Relationship to hippocampal anatomy parameters. International Journal of Developmental Neuroscience, 2018, 65, 66-82.	1.6	5
24	Synaptic Connectivity in Medium Spiny Neurons of the Nucleus Accumbens: A Sex-Dependent Mechanism Underlying Apathy in the HIV-1 Transgenic Rat. Frontiers in Behavioral Neuroscience, 2018, 12, 285.	2.0	25
25	HIV-1 proteins dysregulate motivational processes and dopamine circuitry. Scientific Reports, 2018, 8, 7869.	3.3	37
26	Temporal processsing demands in the HIV $\hat{\epsilon}$ transgenic rat: Amodal gating and implications for diagnostics. International Journal of Developmental Neuroscience, 2017, 57, 12-20.	1.6	19
27	Selective developmental alterations in The HIV-1 transgenic rat: Opportunities for diagnosis of pediatric HIV-1. Journal of NeuroVirology, 2017, 23, 87-98.	2.1	15
28	A Gap in Time: Extending our Knowledge of Temporal Processing Deficits in the HIV-1 Transgenic Rat. Journal of NeuroImmune Pharmacology, 2017, 12, 171-179.	4.1	18
29	Sex Matters: Robust Sex Differences in Signal Detection in the HIV-1 Transgenic Rat. Frontiers in Behavioral Neuroscience, 2017, 11, 212.	2.0	25
30	HIV-1 and cocaine disrupt dopamine reuptake and medium spiny neurons in female rat striatum. PLoS ONE, 2017, 12, e0188404.	2.5	29
31	Progression of temporal processing deficits in the HIV-1 transgenic rat. Scientific Reports, 2016, 6, 32831.	3.3	32
32	Quantification of Filamentous Actin (F-actin) Puncta in Rat Cortical Neurons. Journal of Visualized Experiments, 2016, , e53697.	0.3	6
33	The role of sensory modality in prepulse inhibition: An ontogenetic study. Developmental Psychobiology, 2016, 58, 211-222.	1.6	9
34	HIV-1 Tat and cocaine mediated synaptopathy in cortical and midbrain neurons is prevented by the isoflavone Equol. Frontiers in Microbiology, 2015, 6, 894.	3.5	20
35	HIV-1 Proteins, Tat and gp120, Target the Developing Dopamine System. Current HIV Research, 2015, 13, 21-42.	0.5	31
36	Polytocus focus: Uterine position effect is dependent upon horn size. International Journal of Developmental Neuroscience, 2015, 40, 85-91.	1.6	8

CHARLES F MACTUTUS

#	Article	IF	CITATIONS
37	HIV-1 Transgenic Female Rat: Synaptodendritic Alterations of Medium Spiny Neurons in the Nucleus Accumbens. Journal of NeuroImmune Pharmacology, 2014, 9, 642-653.	4.1	57
38	Synaptodendritic recovery following <scp>HIV</scp> Tat exposure: Neurorestoration by phytoestrogens. Journal of Neurochemistry, 2014, 128, 140-151.	3.9	46
39	Neonatal intrahippocampal HIVâ€1 protein Tat _{1–86} injection: neurobehavioral alterations in the absence of increased inflammatory cytokine activation. International Journal of Developmental Neuroscience, 2014, 38, 195-203.	1.6	20
40	Modeling Deficits in Attention, Inhibition, and Flexibility in HAND. Journal of NeuroImmune Pharmacology, 2014, 9, 508-521.	4.1	39
41	Time and Time Again: Temporal Processing Demands Implicate Perceptual and Gating Deficits in the HIV-1 Transgenic Rat. Journal of NeuroImmune Pharmacology, 2013, 8, 988-997.	4.1	52
42	Prenatal IV Cocaine: Alterations in Auditory Information Processing. Frontiers in Psychiatry, 2011, 2, 38.	2.6	6
43	HIV-1 Tat Protein-Induced Rapid and Reversible Decrease in [3H]Dopamine Uptake: Dissociation of [3H]Dopamine Uptake and [3H]2β-Carbomethoxy-3-β-(4-fluorophenyl)tropane (WIN 35,428) Binding in Rat Striatal Synaptosomes. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 1071-1083.	2.5	84
44	Neurotoxic profiles of HIV, psychostimulant drugs of abuse, and their concerted effect on the brain: Current status of dopamine system vulnerability in NeuroAIDS. Neuroscience and Biobehavioral Reviews, 2008, 32, 883-909.	6.1	127
45	HIV-1 Tat neurotoxicity in primary cultures of rat midbrain fetal neurons: Changes in dopamine transporter binding and immunoreactivity. Neuroscience Letters, 2006, 395, 235-239.	2.1	64
46	Dopaminergic marker proteins in the substantia nigra of human immunodeficiency virus type	2.1	30

1–infected brains. Journal of NeuroVirology, 2006, 12, 140-145.