John Veitch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5510145/publications.pdf

Version: 2024-02-01

103 papers 20,099 citations

41344 49 h-index 101 g-index

104 all docs

104 docs citations

104 times ranked 8767 citing authors

#	Article	IF	CITATIONS
1	A pixelated approach to galaxy catalogue incompleteness: improving the dark siren measurement of the Hubble constant. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1127-1140.	4.4	21
2	Quantum algorithm for gravitational-wave matched filtering. Physical Review Research, 2022, 4, .	3.6	7
3	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20
4	Nested sampling for physical scientists. Nature Reviews Methods Primers, 2022, 2, .	21.2	40
5	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
6	Quantum black hole spectroscopy: probing the quantum nature of the black hole area using LIGO–Virgo ringdown detections. Classical and Quantum Gravity, 2021, 38, 095005.	4.0	17
7	Bekenstein-Hod Universal Bound on Information Emission Rate Is Obeyed by LIGO-Virgo Binary Black Hole Remnants. Physical Review Letters, 2021, 126, 161102.	7.8	15
8	Nested sampling with normalizing flows for gravitational-wave inference. Physical Review D, 2021, 103,	4.7	36
9	Evidence for Hierarchical Black Hole Mergers in the Second LIGO–Virgo Gravitational Wave Catalog. Astrophysical Journal Letters, 2021, 915, L35.	8.3	86
10	A Bayesian Inference Framework for Gamma-ray Burst Afterglow Properties. Universe, 2021, 7, 349.	2.5	2
11	Inclination Estimates from Off-Axis GRB Afterglow Modelling. Universe, 2021, 7, 329.	2.5	10
12	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
13	Cosmological inference using gravitational wave standard sirens: A mock data analysis. Physical Review D, 2020, 101, .	4.7	95
14	Bayesian inference for compact binary coalescences with <scp>bilby</scp> : validation and application to the first LIGO–Virgo gravitational-wave transient catalogue. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3295-3319.	4.4	213
15	Comparing Short Gamma-Ray Burst Jet Structure Models. Astrophysical Journal, 2020, 891, 124.	4.5	13
16	Are stellar-mass binary black hole mergers isotropically distributed?. Monthly Notices of the Royal Astronomical Society, 2020, 501, 970-977.	4.4	13
17	Search for advanced LIGO single interferometer compact binary coalescence signals in coincidence with Gamma-ray events in Fermi-GBM. Classical and Quantum Gravity, 2020, 37, 175001.	4.0	6
18	Observational black hole spectroscopy: A time-domain multimode analysis of GW150914. Physical Review D, 2019, 99, .	4.7	89

#	Article	IF	CITATIONS
19	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	8.3	145
20	Deep and rapid observations of strong-lensing galaxy clusters within the sky localization of GW170814. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5180-5191.	4.4	19
21	Stepping-stone sampling algorithm for calculating the evidence of gravitational wave models. Physical Review D, 2019, 99, .	4.7	10
22	Digging the population of compact binary mergers out of the noise. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4008-4023.	4.4	30
23	Associating host galaxy candidates to massive black hole binaries resolved by pulsar timing arrays. Monthly Notices of the Royal Astronomical Society, 2019, 485, 248-259.	4.4	9
24	On the Interpretation of the Fermi-GBM Transient Observed in Coincidence with LIGO Gravitational-wave Event GW150914. Astrophysical Journal Letters, 2018, 853, L9.	8.3	30
25	What if LIGO's gravitational wave detections are strongly lensed by massive galaxy clusters?. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3823-3828.	4.4	71
26	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
27	Characterization of low-significance gravitational-wave compact binary sources. Physical Review D, 2018, 98, .	4.7	10
28	Null-stream analysis of Pulsar Timing Array data: localization of resolvable gravitational wave sources. Monthly Notices of the Royal Astronomical Society, 2018, 477, 5447-5459.	4.4	8
29	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. , 2018, 21, 1.		2
30	SEARCHING THE GAMMA-RAY SKY FOR COUNTERPARTS TO GRAVITATIONAL WAVE SOURCES: FERMI GAMMA-RAY BURST MONITORÂAND LARGE AREA TELESCOPE OBSERVATIONS OF LVT151012 AND GW151226. Astrophysical Journal, 2017, 835, 82.	4.5	32
31	Accelerating gravitational wave parameter estimation with multi-band template interpolation. Classical and Quantum Gravity, 2017, 34, 115006.	4.0	39
32	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69
33	Model-independent inference on compact-binary observations. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3254-3260.	4.4	58
34	GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. Physical Review Letters, 2017, 119, 141101.	7.8	1,600
35	Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data. Astrophysical Journal, 2017, 847, 47.	4.5	46
36	A gravitational-wave standard siren measurement of the Hubble constant. Nature, 2017, 551, 85-88.	27.8	674

#	Article	IF	Citations
37	Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophysical Journal Letters, 2017, 848, L13.	8.3	2,314
38	Fermi Observations of the LIGO Event GW170104. Astrophysical Journal Letters, 2017, 846, L5.	8.3	15
39	Parameter estimation for heavy binary-black holes with networks of second-generation gravitational-wave detectors. Physical Review D, 2017, 95, .	4.7	66
40	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
41	How would GW150914 look with future gravitational wave detector networks?. Classical and Quantum Gravity, 2017, 34, 174003.	4.0	12
42	GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Physical Review Letters, 2017, 118, 221101.	7.8	1,987
43	Systematic errors in estimation of gravitational-wave candidate significance. Physical Review D, 2017, 96, .	4.7	21
44	GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence. Astrophysical Journal Letters, 2017, 851, L35.	8.3	968
45	Strong-lensing of Gravitational Waves by Galaxy Clusters. Proceedings of the International Astronomical Union, 2017, 13, 98-102.	0.0	19
46	PARAMETER ESTIMATION ON GRAVITATIONAL WAVES FROM NEUTRON-STAR BINARIES WITH SPINNING COMPONENTS. Astrophysical Journal, 2016, 825, 116.	4.5	68
47	Early Advanced LIGO binary neutron-star sky localization and parameter estimation. Journal of Physics: Conference Series, 2016, 716, 012031.	0.4	5
48	Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914. Classical and Quantum Gravity, 2016, 33, 134001.	4.0	225
49	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. Living Reviews in Relativity, 2016, 19, 1.	26.7	427
50	FERMI GBM OBSERVATIONS OF LIGO GRAVITATIONAL-WAVE EVENT GW150914. Astrophysical Journal Letters, 2016, 826, L6.	8.3	246
51	GOING THE DISTANCE: MAPPING HOST GALAXIES OF LIGO AND VIRGO SOURCES IN THREE DIMENSIONS USING LOCAL COSMOGRAPHY AND TARGETED FOLLOW-UP. Astrophysical Journal Letters, 2016, 829, L15.	8.3	126
52	Inference on gravitational waves from coalescences of stellar-mass compact objects and intermediate-mass black holes. Monthly Notices of the Royal Astronomical Society, 2016, 457, 4499-4506.	4.4	42
53	Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo. , 2016, 19, 1.		1
54	Constraining the neutron star equation of state with gravitational wave signals from coalescing binary neutron stars. Physical Review D, 2015, 92, .	4.7	153

#	Article	IF	Citations
55	Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors. Physical Review Letters, 2015, 115, 141101.	7.8	39
56	PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA. Astrophysical Journal, 2015, 804, 114.	4.5	117
57	HIGH-ENERGY ELECTROMAGNETIC OFFLINE FOLLOW-UP OF LIGO-VIRGO GRAVITATIONAL-WAVE BINARY COALESCENCE CANDIDATE EVENTS. Astrophysical Journal, Supplement Series, 2015, 217, 8.	7.7	55
58	Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library. Physical Review D, $2015, 91, \ldots$	4.7	674
59	Gravitational waves: search results, data analysis and parameter estimation. General Relativity and Gravitation, 2015, 47, 11.	2.0	4
60	Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity, 2015, 32, 024001.	4.0	2,530
61	Reconstruction of the gravitational wave signal h (t) during the Virgo science runs and independent validation with a photon calibrator. Classical and Quantum Gravity, 2014, 31, 165013.	4.0	10
62	Optimizing gravitational-wave searches for a population of coalescing binaries: Intrinsic parameters. Physical Review D, 2014, 89, .	4.7	21
63	Testing the no-hair theorem with black hole ringdowns using TIGER. Physical Review D, 2014, 90, .	4.7	103
64	TIGER: A data analysis pipeline for testing the strong-field dynamics of general relativity with gravitational wave signals from coalescing compact binaries. Physical Review D, 2014, 89, .	4.7	130
65	Reconstructing the sky location of gravitational-wave detected compact binary systems: Methodology for testing and comparison. Physical Review D, 2014, 89, .	4.7	50
66	THE FIRST TWO YEARS OF ELECTROMAGNETIC FOLLOW-UP WITH ADVANCED LIGO AND VIRGO. Astrophysical Journal, 2014, 795, 105.	4.5	159
67	Measuring the Spin of Black Holes in Binary Systems Using Gravitational Waves. Physical Review Letters, 2014, 112, 251101.	7.8	95
68	Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photonics, 2013, 7, 613-619.	31.4	825
69	Avoiding selection bias in gravitational wave astronomy. New Journal of Physics, 2013, 15, 053027.	2.9	23
70	Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence. Physical Review D, 2012, 85, .	4.7	176
71	Estimating parameters of coalescing compact binaries with proposed advanced detector networks. Physical Review D, 2012, 85, .	4.7	79
72	Bayesian model selection for testing the no-hair theorem with black hole ringdowns. Physical Review D, 2012, 85, .	4.7	129

#	Article	IF	CITATIONS
73	Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era. Physical Review D, 2012, 85, .	4.7	62
74	Scientific objectives of Einstein Telescope. Classical and Quantum Gravity, 2012, 29, 124013.	4.0	355
75	Testing general relativity using Bayesian model selection: Applications to observations of gravitational waves from compact binary systems. Physical Review D, 2011, 83, .	4.7	70
76	The third generation of gravitational wave observatories and their science reach. Classical and Quantum Gravity, 2010, 27, 084007.	4.0	287
77	The Einstein Telescope: a third-generation gravitational wave observatory. Classical and Quantum Gravity, 2010, 27, 194002.	4.0	1,211
78	The Mock LISA Data Challenges: from challenge 3 to challenge 4. Classical and Quantum Gravity, 2010, 27, 084009.	4.0	83
79	Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network. Physical Review D, 2010, 81, .	4.7	206
80	SEARCH FOR GRAVITATIONAL-WAVE INSPIRAL SIGNALS ASSOCIATED WITH SHORT GAMMA-RAY BURSTS DURING LIGO'S FIFTH AND VIRGO'S FIRST SCIENCE RUN. Astrophysical Journal, 2010, 715, 1453-1461.	4.5	90
81	Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project. Classical and Quantum Gravity, 2009, 26, 165008.	4.0	110
82	Status of NINJA: the Numerical INJection Analysis project. Classical and Quantum Gravity, 2009, 26, 114008.	4.0	39
83	Studying stellar binary systems with the Laser Interferometer Space Antenna using delayed rejection Markov chain Monte Carlo methods. Classical and Quantum Gravity, 2009, 26, 204024.	4.0	5
84	Bayesian inference on the Numerical INJection Analysis (NINJA) data set using a nested sampling algorithm. Classical and Quantum Gravity, 2009, 26, 114011.	4.0	10
85	Bayesian approach to the study of white dwarf binaries in LISA data: The application of a reversible jump Markov chain MonteÂCarlo method. Physical Review D, 2009, 80, .	4.7	8
86	Assigning confidence to inspiral gravitational wave candidates with Bayesian model selection. Classical and Quantum Gravity, 2008, 25, 184010.	4.0	40
87	The Mock LISA Data Challenges: from Challenge 1B to Challenge 3. Classical and Quantum Gravity, 2008, 25, 184026.	4.0	64
88	Markov chain Monte Carlo searches for galactic binaries in Mock LISA Data Challenge 1B data sets. Classical and Quantum Gravity, 2008, 25, 184028.	4.0	5
89	Report on the second Mock LISA data challenge. Classical and Quantum Gravity, 2008, 25, 114037.	4.0	44
90	Bayesian approach to the follow-up of candidate gravitational wave signals. Physical Review D, 2008, 78, .	4.7	46

#	Article	IF	Citations
91	Inference on inspiral signals using LISA MLDC data. Classical and Quantum Gravity, 2007, 24, S521-S527.	4.0	13
92	Inference on white dwarf binary systems using the first round Mock LISA Data Challenges data sets. Classical and Quantum Gravity, 2007, 24, S541-S549.	4.0	15
93	Report on the first round of the Mock LISA Data Challenges. Classical and Quantum Gravity, 2007, 24, S529-S539.	4.0	33
94	The GEO-HF project. Classical and Quantum Gravity, 2006, 23, S207-S214.	4.0	133
95	Status of the GEO600 detector. Classical and Quantum Gravity, 2006, 23, S71-S78.	4.0	123
96	LISA source confusion: identification and characterization of signals. Classical and Quantum Gravity, 2005, 22, S901-S911.	4.0	18
97	A time-domain MCMC search and upper limit technique for gravitational waves of uncertain frequency from a targeted neutron star. Classical and Quantum Gravity, 2005, 22, S995-S1001.	4.0	5
98	The status of GEO 600. Classical and Quantum Gravity, 2005, 22, S193-S198.	4.0	27
99	Bayesian modeling of source confusion in LISA data. Physical Review D, 2005, 72, .	4.7	51
100	Estimating the parameters of gravitational waves from neutron stars using an adaptive MCMC method. Classical and Quantum Gravity, 2004, 21, S1655-S1665.	4.0	22
101	Commissioning, characterization and operation of the dual-recycled GEO 600. Classical and Quantum Gravity, 2004, 21, S1737-S1745.	4.0	15
102	Detecting Gravitational Radiation from Neutron Stars using a Six-Parameter Adaptive MCMC Method. AIP Conference Proceedings, 2004, , .	0.4	5
103	Vortex sorter for Bose-Einstein condensates. Physical Review A, 2004, 70, .	2.5	3