Felipe Polo-Garzon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5509922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface Reconstructions of Metal Oxides and the Consequences on Catalytic Chemistry. ACS Catalysis, 2019, 9, 5692-5707.	11.2	127
2	Acid–base catalysis over perovskites: a review. Journal of Materials Chemistry A, 2018, 6, 2877-2894.	10.3	101
3	Photoinduced Strong Metal–Support Interaction for Enhanced Catalysis. Journal of the American Chemical Society, 2021, 143, 8521-8526.	13.7	85
4	Acid–Base Reactivity of Perovskite Catalysts Probed via Conversion of 2-Propanol over Titanates and Zirconates. ACS Catalysis, 2017, 7, 4423-4434.	11.2	81
5	Discriminating the Role of Surface Hydride and Hydroxyl for Acetylene Semihydrogenation over Ceria through <i>In Situ</i> Neutron and Infrared Spectroscopy. ACS Catalysis, 2020, 10, 5278-5287.	11.2	70
6	Elucidation of the Reaction Mechanism for High-Temperature Water Gas Shift over an Industrial-Type Copper–Chromium–Iron Oxide Catalyst. Journal of the American Chemical Society, 2019, 141, 7990-7999.	13.7	60
7	Dry Reforming of Methane on Rh-Doped Pyrochlore Catalysts: A Steady-State Isotopic Transient Kinetic Study. ACS Catalysis, 2016, 6, 3826-3833.	11.2	59
8	Understanding the Impact of Surface Reconstruction of Perovskite Catalysts on CH ₄ Activation and Combustion. ACS Catalysis, 2018, 8, 10306-10315.	11.2	50
9	<i>In Situ</i> Strong Metal–Support Interaction (SMSI) Affects Catalytic Alcohol Conversion. ACS Catalysis, 2021, 11, 1938-1945.	11.2	50
10	Controlling Reaction Selectivity through the Surface Termination of Perovskite Catalysts. Angewandte Chemie - International Edition, 2017, 56, 9820-9824.	13.8	47
11	Impact of Surface Composition of SrTiO ₃ Catalysts for Oxidative Coupling of Methane. ChemCatChem, 2019, 11, 2107-2117.	3.7	41
12	Exploring perovskites for methane activation from first principles. Catalysis Science and Technology, 2018, 8, 702-709.	4.1	35
13	Microkinetic model for the dry reforming of methane on Rh doped pyrochlore catalysts. Journal of Catalysis, 2016, 340, 196-204.	6.2	34
14	Ab initio derived reaction mechanism for the dry reforming of methane on Rh doped pyrochlore catalysts. Journal of Catalysis, 2016, 333, 59-70.	6.2	31
15	Neutron Scattering Investigations of Hydride Species in Heterogeneous Catalysis. ChemSusChem, 2019, 12, 93-103.	6.8	29
16	Controlling Reaction Selectivity through the Surface Termination of Perovskite Catalysts. Angewandte Chemie, 2017, 129, 9952-9956.	2.0	19
17	The interplay between surface facet and reconstruction on isopropanol conversion over SrTiO3 nanocrystals. Journal of Catalysis, 2020, 384, 49-60.	6.2	19
18	Measuring and directing charge transfer in heterogenous catalysts. Nature Communications, 2022, 13,	12.8	19

Felipe Polo-Garzon

#	Article	IF	CITATIONS
19	Alcohol-Induced Low-Temperature Blockage of Supported-Metal Catalysts for Enhanced Catalysis. ACS Catalysis, 2020, 10, 8515-8523.	11.2	18
20	Manipulating Copper Dispersion on Ceria for Enhanced Catalysis: A Nanocrystalâ€Based Atomâ€Trapping Strategy. Advanced Science, 2022, 9, e2104749.	11.2	16
21	Mechanistic Understanding of Catalytic Conversion of Ethanol to 1-Butene over 2D-Pillared MFI Zeolite. Journal of Physical Chemistry C, 2020, 124, 28437-28447.	3.1	9
22	Revealing the interplay between "intelligent behavior―and surface reconstruction of non-precious metal doped SrTiO3 catalysts during methane combustion. Catalysis Today, 2022, , .	4.4	5
23	Neutron Scattering Investigations of Hydride Species in Heterogeneous Catalysis. ChemSusChem, 2019, 12, 5-5.	6.8	0