Sudip Maity

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5509754/publications.pdf

Version: 2024-02-01

331670 315739 1,947 39 21 38 h-index citations g-index papers 44 44 44 3075 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Carbon-carbon (C C) bond forming reactions for the production of hydrocarbon biofuels from biomass-derived compounds., 2022,, 297-325.		1
2	Partitioning of Rare Earth Elements (REEs) from Coal to Coal Fly Ash in Different Thermal Power Stations (TPSs) of India. Journal of the Geological Society of India, 2022, 98, 460-466.	1.1	8
3	Geochemical, mineralogical and toxicological characteristics of coal fly ash and its environmental impacts. Chemosphere, 2022, 307, 135710.	8.2	30
4	Renewable fuels from different carbonaceous feedstocks: a sustainable route through <scp>Fischer–Tropsch</scp> synthesis. Journal of Chemical Technology and Biotechnology, 2021, 96, 853-868.	3.2	37
5	Fischer–Tropsch synthesis over Pd promoted cobalt based mesoporous supported catalyst. Oil and Gas Science and Technology, 2021, 76, 21.	1.4	3
6	Evaluation of Treatment Techniques for Utilising Acid Mine Water in Agriculture. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	3
7	Nitration of Jharia basin coals, India: a study of structural modifications by XRD and FTIR techniques. International Journal of Coal Science and Technology, 2021, 8, 1034-1053.	6.0	17
8	Coal fly ashâ€derived mesoporous SBAâ€15 as support material for production of liquid hydrocarbon through Fischer–Tropsch route. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2471.	1.5	13
9	Synthesis of middle distillate through low temperature Fischer-Tropsch (LTFT) reaction over mesoporous SDA supported cobalt catalysts using syngas equivalent to coal gasification. Applied Catalysis A: General, 2018, 557, 55-63.	4.3	14
10	Preparation, characterization and optimization for upgrading Leucaena leucocephala bark to biochar fuel with high energy yielding. Energy, 2016, 106, 743-756.	8.8	77
11	Lower alkanes dehydrogenation: Strategies and reaction routes to corresponding alkenes. Fuel Processing Technology, 2016, 149, 239-255.	7.2	102
12	MnO _x supported on a TiO ₂ @SBA-15 nanoreactor used as an efficient catalyst for one-pot synthesis of imine by oxidative coupling of benzyl alcohol and aniline under atmospheric air. RSC Advances, 2016, 6, 73906-73914.	3.6	17
13	Gold nanoparticles on mesoporous Cerium-Tin mixed oxide for aerobic oxidation of benzyl alcohol. Journal of Molecular Catalysis A, 2016, 418-419, 41-53.	4.8	15
14	Synthesis, characterization of VPO catalyst dispersed on mesoporous silica surface and catalytic activity for cyclohexane oxidation reaction. Microporous and Mesoporous Materials, 2016, 223, 121-128.	4.4	31
15	Comparative TPR and TPD Studies of Cu and Ca Promotion on Fe-Zn- and Fe-Zn-Zr-Based Fischer-Tropsch Catalysts. Oil and Gas Science and Technology, 2015, 70, 511-519.	1.4	6
16	Mesoporous TUD-1 supported indium oxide nanoparticles for epoxidation of styrene using molecular O ₂ . RSC Advances, 2015, 5, 46850-46860.	3.6	28
17	Investigations on PAHs and trace elements in coal and its combustion residues from a power plant. Fuel, 2015, 162, 138-147.	6.4	106
18	Niobium doped hexagonal mesoporous silica (HMS-X) catalyst for vapor phase Beckmann rearrangement reaction. RSC Advances, 2014, 4, 845-854.	3.6	28

#	Article	IF	Citations
19	Highly active Ga promoted Co-HMS-X catalyst towards styrene epoxidation reaction using molecular O2. Applied Catalysis A: General, 2014, 482, 61-68.	4.3	36
20	Dust fall and elemental flux in a coal mining area. Journal of Geochemical Exploration, 2014, 144, 443-455.	3.2	30
21	Sulfated zirconia as an efficient heterogeneous and reusable catalyst for one pot synthesis of flavanones. Journal of Saudi Chemical Society, 2014, 18, 464-468.	5.2	7
22	A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renewable and Sustainable Energy Reviews, 2013, 23, 443-462.	16.4	470
23	TPR and TPD studies of effects of Cu and Ca promotion on Fe–Zn-based Fischer–Tropsch catalysts. Journal of Chemical Sciences, 2013, 125, 679-686.	1.5	10
24	Discovery of 3,3′-diindolylmethanes as potent antileishmanial agents. European Journal of Medicinal Chemistry, 2013, 63, 435-443.	5. 5	85
25	Barium, calcium and magnesium doped mesoporous ceria supported gold nanoparticle for benzyl alcoholoxidation using molecular O ₂ . Catalysis Science and Technology, 2013, 3, 360-370.	4.1	61
26	Sm-CeO2 supported gold nanoparticle catalyst for benzyl alcohol oxidation using molecular O2. Applied Catalysis A: General, 2013, 452, 94-104.	4.3	63
27	Aerobic oxidation of benzyl alcohol over mesoporous Mn-doped ceria supported Au nanoparticle catalyst. Journal of Molecular Catalysis A, 2013, 378, 47-56.	4.8	57
28	Low CO2 selective iron based Fischer–Tropsch catalysts for coal based polygeneration. Applied Energy, 2013, 107, 377-383.	10.1	9
29	Heteropolyacid-clay nano-composite as a novel heterogeneous catalyst for the synthesis of 2,3-dihydroquinazolinones. Journal of Industrial and Engineering Chemistry, 2013, 19, 407-412.	5.8	27
30	Studies on synthesis and characteristics of zeolite prepared from Indian fly ash. Environmental Technology (United Kingdom), 2012, 33, 37-50.	2.2	11
31	A review on conversion of triglycerides to on-specification diesel fuels without additional inputs. International Journal of Energy Research, 2012, 36, 691-702.	4.5	19
32	Intramolecular Baseâ€Free Sonogashira Reaction for the Synthesis of Benzannulated Chiral Macrocycles Embedded in Carbohydrate Templates. Advanced Synthesis and Catalysis, 2012, 354, 1933-1940.	4.3	18
33	Reflections on the chemistry of the Fischer–Tropsch synthesis. RSC Advances, 2012, 2, 7347.	3.6	109
34	Towards reforming technologies for production of hydrogen exclusively from renewable resources. Green Chemistry, 2011, 13, 2272.	9.0	49
35	Increasing carbon utilization in Fischer–Tropsch synthesis using H2-deficient or CO2-rich syngas feeds. Fuel Processing Technology, 2010, 91, 136-144.	7.2	94
36	Towards the conversion of carbohydrate biomass feedstocks to biofuels via hydroxylmethylfurfural. Energy and Environmental Science, 2010, 3, 1833.	30.8	179

SUDIP MAITY

#	Article	IF	CITATION
37	Cu–Mn bimetallic catalyst for Huisgen [3+2]-cycloaddition. Green Chemistry, 2010, 12, 1568.	9.0	34
38	Influence of Nitric Acid Treatment in Different Media on X-ray Structural Parameters of Coal. Energy &	5.1	9
39	Influence of acidity of montmorillonite and modified montmorillonite clay minerals for the conversion of longifolene to isolongifolene. Journal of Molecular Catalysis A, 2007, 266, 215-220.	4.8	34